Eight highly trained cyclists were studied during exercise after glycogen depletion (test A) and during carbohydrate (CHO) loading (test B). In test B subjects were able to complete 2 h of exercise at 70-75% maximal workload (Wmax), whereas the initial intensity of 70% Wmax had to be reduced to 50% in test A. Plasma ammonia increased more rapidly, and plasma alanine, glutamate, and glutamine were lower in test A. Exercise caused a 3.6-fold increase in the proportion of active branched-chain 2-oxoacid dehydrogenase (BC) complex in muscle in test A. No activation occurred in test B. There was an inverse correlation between the activity of the BC complex and the glycogen content of the postexercise biopsies. Exercise did not cause changes in the muscle content of ATP, ADP, AMP, IMP, hypoxanthine, and lactate. It is concluded that CHO loading abolishes increases in branched-chain amino acid (BCAA) oxidation during exercise and that part of the ammonia production during prolonged exercise originates from deamination of amino acids. The data appear to confirm the hypothesis (A.J. M. Wagenmakers, J.H. Coakley, and R.H.T. Edwards. Int. J. Sports Med. 11: S101-S113, 1990) that acceleration of the BCAA aminotransferase reaction may drain the tricarboxylic acid cycle and that glycogen is a carbon chain precursor of tricarboxylic acid cycle intermediates and glutamine.
This study was designed to examine aspects of digestive function that may limit assimilation of water and oxidation of orally ingested carbohydrate (CHO) during exercise. Eight males completed a crossover study in which each cycled on four occasions for 80 min at 70% maximal O2 consumption. Beverage was consumed at 0, 20, 40, and 60 min. Beverages were water, 4.5% glucose (4.5G), 17% glucose (17G), and 17% maltodextrin (17MD). CHO beverages contained 20 meq/l NaCl and were 13C enriched to measure exogenous CHO oxidation. Gastric (beverage) volume was measured at 80 min. Water uptake was estimated by including 2H2O in the beverage and measuring 2H accumulation in blood. Jejunal perfusion tests were conducted at rest with the same subjects and beverages. In 60 min, 1,294 +/- 31 (SE) ml were ingested; at 80 min, volumes emptied with H2O (1,257 +/- 32 ml) and 4.5G (1,223 +/- 32 ml) were greater than with 17G (781 +/- 56 ml) and 17MD (864 +/- 71 ml; P less than 0.05). Total CHO oxidized was similar with all beverages, but there was a greater increase in exogenous CHO oxidation over time with 17G and 17MD than with 4.5G; 54, 19, and 18% of the CHO ingested with 4.5G, 17G, and 17MD, respectively, was oxidized. This represents 57, 32, and 27%, respectively, of the CHO emptied from the stomach. 2H accumulation in the blood was more rapid with H2O and 4.5G than with 17G or 17MD. Net jejunal water absorption was greater from 4.5G than from water. Net water absorption was also observed from 17MD, whereas net secretion was observed with 17G.(ABSTRACT TRUNCATED AT 250 WORDS)
The high prevalence of gastrointestinal complaints in long-distance runners makes the movements specific to this type of exercise suspected of causing a disruption of normal gastrointestinal function. Gastric emptying rate is one indicator thereof. In the present study trained volunteers performed similar repeated fluid ingestion tests while running and while bicycling for 80 min at 70% VO2max. Control tests at rest were also conducted. Two drinks containing carbohydrate were tested, one hypertonic, and one isotonic. Artificially sweetened water was used as a control. Gastric emptying rate of the isotonic drink, expressed as a percentage of the volume in the stomach at the beginning of each measurement period, did not differ between cycling and running during the first 40 min and was faster during cycling than during running between 40 and 80 min. With the hypertonic drink no differences between cycling and running were observed. In comparing gastric emptying rates after each sequential bolus, at rest, the isotonic drink was observed to maintain a high emptying rate, equal to that of water, whereas the hypertonic drink emptied more slowly after the first 20-min period. A similar pattern was observed during both running and cycling. The isotonic drink continued to empty quickly after the initial 20 min, whereas GE rate of the hypertonic drink decreased after the initial 20 min.
One hundred and seventy-two competitors of the Swiss Alpine Marathon, Davos, Switzerland, 1988, volunteered for this research project. Of these volunteers 170 (158 men, 12 women) finished the race (99%). The race length was 67 km with an altitude difference of 1,900 m between the highest and lowest points. Mean age was 39 (SEM 0.8) years. Average finishing times were 8 h 18 min (men) and 8 h 56 min (women). Loss of body mass averaged 3.4% body mass [mean 3.3 (SEM 0.2)%; 4.0 (SEM 0.4)%; men and women, respectively]. Blood samples from a subgroup of 89 subjects (6 women and 83 men) were taken prior to and immediately after completion of the race. Changes in haemoglobin (9.3 mmol.l-1 pre-race, 9.7 mmol.l-1 post-race) and packed cell volume (0.44 pre, 0.48 post-race) were in line with the moderate level of dehydration displayed by changes in body mass. Mean plasma volume decreased by 8.3%. No significant changes in plasma osmolality, sodium, or chloride were observed but plasma potassium did increase by 5% (4.2 mmol.l-1 pre-race, 4.4 mmol.l-1 post-race). Mean fluid consumption was 3290 (SEM 103) ml. Forty-three percent of all subjects, and 33% of those who gave blood samples, complained of gastro-intestinal (GI) distress during the race. No direct relationship was found between the quantity or quality of beverage consumed and the prevalence of GI symptoms.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.