Permanent WRAP URL:http://wrap.warwick.ac.uk/81857 Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription. AbstractThe effect of periodic changes in particle velocity on mass transfer to the reacting surface of a magnetic particle with a diameter 225 m in laminar flow has been investigated in a microfluidic reactor. The periodic particle motion in a fluid was investigated under a sinusoidal magnetic field generated by a quadrupole arrangement of electromagnets around the reactor. The effect of operating frequency of the rotating magnetic field, intensity of the magnetic field, and phase shift between the two sets of magnets on particle dynamics has been studied. Three particle motion modes have been observed depending on the frequency of the applied field. The mass transfer rate was estimated under steady velocity and variable velocity of the particle using a mass transfer correlation by Feng and Michaelides (Int. J. Heat Mass Transfer 44 (2001) 4445). The validity of this correlation for the case of variable particle velocity has been confirmed with a 2D numerical model, describing actual hydrodynamics and mass transfer towards the particle surface. The mass transfer coefficient *Revised Manuscript (clean for typesetting) Click here to view linked References 2 depends both on the mean particle velocity and the deviation of velocity from the mean value.The periodic movement with variable particle velocity reduces the mass transfer coefficient by 7.6% as compared to steady state motion with the same mean velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.