METIS is the 'Mid-infrared ELT Imager and Spectrograph' for the European Extremely Large Telescope. This E-ELT instrument will cover the thermal/mid-infrared wavelength range from 3 to 14 μm and will require cryogenic cooling of detectors and optics. We present a vibration-free cooling technology for this instrument based on sorption coolers developed at the University of Twente in collaboration with Dutch Space. In the baseline design, the instrument has four temperature levels: N-band: detector at 8 K and optics at 25 K; L/M-band: detector at 40K and optics at 77 K. The latter temperature is established by a liquid nitrogen supply with adequate cooling power. The cooling powers required at the lower three levels are 0.4 W, 1.1 W, and 1.4 W, respectively. The cryogenic cooling technology that we propose uses a compressor based on the cyclic adsorption and desorption of a working gas on a sorber material such as activated carbon. Under desorption, a high pressure can be established. When expanding the high-pressure fluid over a flow restriction, cooling is obtained. The big advantage of this cooling technology is that, apart from passive valves, it contains no moving parts and, therefore, generates no vibrations. This, obviously, is highly attractive in sensitive, high-performance optical systems. A further advantage is the high temperature stability down to the mK level. In a Dutch national research program we aim to develop a cooler demonstrator for METIS. In the paper we will describe our cooler technology and discuss the developments towards the METIS cooler demonstrator.
Abstract. METIS is the 'Mid-infrared ELT Imager and Spectrograph' for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3 -14 micron, and requires cryogenic cooling of detectors and optics. A vibration-free cooling technology for this instrument based on sorption coolers is developed at the University of Twente in collaboration with Dutch Space. In the baseline design, the instrument has four temperature levels: N-band: detector at 8 K and optics at 25 K; L/M-band: detector at 40 K and optics at 70 K. The latter temperature level is established by a pumped-liquid nitrogen line. The cooling powers required at the lower three levels are 0.4 W, 1.1 W, and 1.4 W, respectively. We propose a vibration-free sorption-based cooler with three cascaded Joule-Thomson (JT) coolers of which the sorption compressors are all heat sunk at the 70 K platform. A helium-operated cooler is used to obtain the 8 K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40 K, 25 K and 15 K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40 K level is realized by a neon-based sorption cooler. In the paper, we present the preliminary design of this threestage cooler and we discuss the developments towards a demonstrator version of this METIS cooler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.