Evaluating left atrial pressure (LAP) solely from the left ventricular preload perspective is a restrained approach. Accurate assessment of LAP is particularly relevant when pulmonary congestion and/or right heart dysfunction are present since it is the pressure most closely related to pulmonary venous pressure and thus pulmonary haemodynamic load. Amalgamation of LAP measurement into assessment of the ‘transpulmonary circuit’ may have a particular role in differentiating cardiac failure phenotypes in critical care. Most of the literature in this area involves cardiology patients, and gaps of knowledge in application to the bedside of the critically ill patient remain significant. Explored in this review is an overview of left atrial physiology, invasive and non-invasive methods of LAP measurement and their potential clinical application. Graphical abstract
Background: Assessment of competence in basic critical care echocardiography is complex. Competence relies on not only imaging accuracy but also interpretation and appropriate management decisions. The experience to achieve these skills, real-time, is likely more than required for imaging accuracy alone. We aimed to assess the feasibility of using simulation to assess number of studies required to attain competence in basic critical care echocardiography. Methods: This is a prospective pilot study recruiting trainees at various degrees of experience in basic critical care echocardiography using experts as reference standard. We used high fidelity simulation to assess speed and accuracy using total time taken, total position difference and total angle difference across the basic acoustic windows. Interpretation and clinical application skills were assessed using a clinical scenario. 'Cut-off' values for number of studies required for competence were estimated. Results: Twenty-seven trainees and eight experts were included. The subcostal view was achieved quickest by trainees (median 23 s, IQR 19-37). Eighty-seven percent of trainees did not achieve accuracy across all views; 81% achieved accuracy with the parasternal long axis and the least accurate was the parasternal short axis (44% of trainees). Fewer studies were required to be considered competent with imaging acquisition compared with competence in correct interpretation and integration (15 vs. 40 vs. 50, respectively). Discussion: The use of echocardiography simulation to determine competence in basic critical care echocardiography is feasible. Competence in image acquisition appears to be achieved with less experience than correct interpretation and correct management decisions. Further studies are required.
Introduction Right ventricular (RV) and pulmonary vascular dysfunction appear to be common in sepsis. RV performance is frequently assessed in isolation, yet its close relationship to afterload means combined analysis with right ventricular outflow tract (RVOT) Doppler and RV–pulmonary arterial (RV–PA) coupling may be more informative than standard assessment techniques. Data on feasibility and utility of these parameters in sepsis are lacking and were explored in this study. Methods This is a retrospective study over a 3-year period of one-hundred and thirty-one patients admitted to ICU with sepsis who underwent transthoracic echocardiography (TTE) with RVOT pulsed wave Doppler. RVOT Doppler flow and RV–PA coupling was evaluated alongside standard measurements of RV systolic function and pulmonary pressures. RVOT Doppler analysis included assessment of pulmonary artery acceleration time (PAAT), velocity time integral and presence of notching. RV–PA coupling was assessed using tricuspid annular planar systolic excursion/pulmonary artery systolic pressure (TAPSE/PASP) ratio. Results PAAT was measurable in 106 (81%) patients, and TAPSE/PASP was measurable in 77 (73%). Seventy-three (69%) patients had a PAAT of ≤ 100 ms suggesting raised pulmonary vascular resistance (PVR) is common. RVOT flow notching occurred in 15 (14%) of patients. TRV was unable to be assessed in 24 (23%) patients where measurement of PAAT was possible. RV dysfunction (RVD) was present in 28 (26%), 26 (25%) and 36 (34%) patients if subjective assessment, TAPSE < 17 mm and RV dilatation definitions were used, respectively. There was a trend towards shorter PAAT with increasing severity of RVD. RV–PA uncoupling defined as a TAPSE/PASP < 0.31 mm/mmHg was present in 15 (19%) patients. As RV dilatation increased the RV–PA coupling ratio decreased independent of LV systolic function, whereas TAPSE appeared to be more susceptible to changes in LV systolic function. Conclusion Raised PVR and RV–PA uncoupling is seen in a significant proportion of patients with sepsis. Non-invasive assessment with TTE is feasible. The role of these parameters in assisting improved definitions of RVD, as well as their therapeutic and prognostic utility against standard parameters, deserves further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.