Detection of hoof-on and -off events are essential to gait classification in horses. Wearable sensors have been endorsed as a convenient alternative to the traditional force plate-based method. The aim of this study was to propose and validate inertial sensor-based methods of gait event detection, reviewing different sensor locations and their performance on different gaits and exercise surfaces. Eleven horses of various breeds and ages were recruited to wear inertial sensors attached to the hooves, pasterns and cannons. Gait events detected by pastern and cannon methods were compared to the reference, hoof-detected events. Walk and trot strides were recorded on asphalt, grass and sand. Pastern-based methods were found to be the most accurate and precise for detecting gait events, incurring mean errors of between 1 and 6ms, depending on the limb and gait, on asphalt. These methods incurred consistent errors when used to measure stance durations on all surfaces, with mean errors of 0.1 to 1.16% of a stride cycle. In conclusion, the methods developed and validated here will enable future studies to reliably detect equine gait events using inertial sensors, under a wide variety of field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.