A variational principle is developed for computing accurate values of local plasma transport coefficients in nonsymmetric toroidal confinement configurations. Numerical solutions of the linearized drift Fokker–Planck equation are used to obtain the thermodynamic fluxes as functions of collision frequency and the radial electric field. Effects resulting from the variation of the longitudinal adiabatic invariant J along an orbit (resulting from particle transitions from helically trapped to toroidally trapped orbits) are treated. The velocity-space distribution resulting from trapped, circulating, and transition particle orbits is well represented by a Legendre polynomial expansion in the pitch angle coordinate. The computational effort is significantly reduced from that required with Monte Carlo methods through use of an efficient treatment of the disparity between the time scales of collisionless and collisional particle dynamics. Numerical computations for a stellarator configuration are presented.
The poloidal momentum balance equation in tokamaks is shown to have bifurcated solutions; the poloidal flow velocity Up can suddenly become more positive when the ion collisionality decreases. The corresponding radial electric field Er becomes more negative, suppresses turbulent fluctuations, and improves plasma confinement. A heuristic argument is employed to illustrate the effects of Er on turbulent fluctuations. A more negative value of Er and/or a more positive value of dEr /dr can suppress the fluctuation amplitudes, if dP/dr<0 (with r the local minor raidus and P the plasma pressure). The theory is employed to explain the L–H transition observed in tokamaks.
Recent calculations have shown that when external momentum sources and plasma rotation are included in the neoclassical theory, the standard results for impurity transport can be strongly altered. Under appropriate conditions, inward convection is reduced by co-injection and enhanced by counter-injection. In order to examine the theoretical predictions, several observations of impurity transport have been made in the ISX-B tokamak during neutral-beam injection for comparison with the transport seen with Ohmic heating alone. Both intrinsic contaminants and deliberately introduced test impurities display a behaviour that is in qualitative agreement with the predicted beam-driven effects. These correlations are particularly noticeable when the comparisons are made for deuterium where the impurity transport in the Ohmically heated discharges exhibits neoclassical-like characteristics, i.e. accumulation and long confinement times. Similar but smaller effects are observed in beam-heated hydrogen discharges; neoclassical-like behaviour is not seen in Ohmically heated hydrogen sequences. Emphasis has been placed on measuring toroidal plasma rotation, and semiquantitative comparisons with the theories of beam-induced impurity transport have been made. It is possible that radial electric fields other than those associated with momentum transfer and increased anomalous processes during injection could also play a role.
Bootstrap currents in the low collisionality regime in nonaxisymmetric toroidal plasmas are calculated analytically using a model drift kinetic equation. The results obtained using the analytic expression are compared with those calculated from the numerical solutions of the drift kinetic equation. Qualitatively and quantitively, the results are in reasonable agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.