We present a proposal of a set-up to measure the work distribution of a process acting on a quantum system emulated by the transverse degrees of freedom of classical light. Hermite-Gaussian optical modes are used to represent the energy eigenstates of a quantum harmonic oscillator prepared in a thermal state. The Fourier transform of the work distribution, or the characteristic function, can be obtained by measuring the light intensity at the output of a properly designed interferometer. The usefulness of the approach is illustrated by calculating the work distribution for a unitary operation that displaces the linear momentum of the oscillator. Other types of processes and quantum systems can be implemented with the same scheme. We also show that the set-up can be used to investigate the energy distribution for open dynamics described by completely positive maps. We discuss the feasibility of the experiment, which can be realized with simple linear optical components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.