Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011b, a). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository.
Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011a, b). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonizes them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of December 2020, the ISMN now contains data of 65 networks and 2678 stations located all over the globe, with a time period spanning from 1952 to present.The number of networks and stations covered by the ISMN is still growing and many of the data sets contained in the database continue to be updated. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade,including a description of network and data set updates and quality control procedures. A comprehensive review of existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage, and to shape priorities for the next decade of operations of this unique community-based data repository.
Soil moisture data are critical to understanding biophysical and societal impacts of climate change. However, soil moisture data availability is limited due to sparse in situ monitoring, particularly in mountain regions. Here we present methods, specifications, and initial results from the interactive Roaring Fork Observation Network (iRON), a soil, weather, and ecological monitoring system in the Southern Rocky Mountains of Colorado. Initiated in 2012, the network is currently composed of nine stations, distributed in elevation from 1,890 to 3,680 m, that continually collect and transmit measurements of soil moisture at three depths (5, 20, and 50 cm), soil temperature (20 cm), and meteorological conditions. Time‐lapse cameras for phenological observations, snow depth sensors, and periodic co‐located vegetation surveys complement selected stations. iRON was conceived and designed with the joint purpose of supporting bioclimatic research and resource management objectives in a snow‐dominated watershed. In the short term, iRON data can be applied to assessing the impact of temperature and precipitation on seasonal soil moisture conditions and trends. As more data are collected over time, iRON will help improve understanding of climate‐driven changes to soil, vegetation, and hydrologic conditions. In presenting this network and its initial data, we hope that the network's elevational gradient will contribute to bioclimatic mountain research, while active collaboration with partners in resource management may provide a model for science‐practice interaction in support of long‐term monitoring.
Local community interest in better understanding regional climate change impacts has motivated the establishment of a long-term soil moisture and weather observation network in the Roaring Fork catchment of the Colorado River Headwaters. This catchmentwide suite of 10 stations, installed between 2012 and 2020, collects frequent, fixedinterval data on soil moisture, soil temperature, rain, air temperature, relative humidity, and (at some stations) snow across an elevational gradient from 1800 to 3680 m. In this paper we provide a description of the data this network provides, how data are accessed, and how this community-supported effort has resulted in data that support mountain hydrology research with applications for resource management and climate change adaptation decision making. All data from this network are publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.