The effect of Mg, Si, N, and O ion implantation ͑with doses in the range 5ϫ10 13-1 ϫ10 18 cm Ϫ2), in epitaxially grown GaN samples has been studied using Raman spectroscopy. It is found that implantation increases the static disorder and activates modes that were not allowed in the as-grown material. More specifically it causes the appearance of three additional Raman peaks at 300, 420, and 670 cm Ϫ1. It is found that the position of these peaks does not depend on the type of the implant and thus they do not correspond to local vibrational modes. They are attributed to disorder activated Raman scattering ͑300 cm Ϫ1 ͒ and/or to implantation induced N and Ga vacancies or interstitials ͑420 and 670 cm Ϫ1 ͒. Finally, ion implantation causes a marginal increase of the build-in hydrostatic stress.
Manganese doped ferrite (MnxFe3-xO4) nanoparticles with x = 0.29-0.77 were prepared under solvothermal conditions in the presence solely of a polyol using the trivalent manganese and iron acetylacetonates as precursors. In this facile approach, a variety of polyols such as polyethylene glycol (PEG 8000), tetraethylene glycol (TEG), propylene glycol (PG) and a mixture of TEG and PG (1 : 1) were utilized in a triple role as a solvent, a reducing agent and a surface-functionalizing agent. The composition of the fine cubic-spinel structures was found to be related to the reductive ability of each polyol, while determination of structural characteristics plus the inversion parameter (i = 0.18-0.38) were provided by X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy at both the Fe and Mn K-edges. The saturation magnetization increased up to 80 emu g(-1) when x = 0.35 and i = 0.22. In addition, the as-prepared nanocrystals coated with PEG, PG and PG&TEG showed excellent colloidal stability in water, while the TEG-coated particles were not water dispersible and converted to hydrophilic when were extra PEGylated. Measurements of the (1)H NMR relaxation in water were carried out and the nanoprobes were evaluated as potential contrast agents.
Manganese ferrite (MnFe2O4) nanoparticles of identical size (9 nm) and with different inversion degrees were synthesized under solvothermal conditions as a candidate theranostic system. In this facile approach, a long-chain amine, oleylamine, was utilized as a reducing and surface-functionalizing agent. The synthesized nanoparticles were shown to have a cubic-spinel structure as characterized by TEM and XRD patterns. Control over their inversion degree was achieved by a simple change of manganese precursor from Mn(acac)2 to Mn(acac)3. The variation in the inversion degree is ascribed to the partial oxidation of Mn(2+) to Mn(3+), as was evidenced by X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy at both the Fe and Mn K-edges. The reduction of the inversion degree from 0.42 to 0.22 is close to the corresponding bulk value of 0.20 and led to elevated magnetization (65.7 emu g(-1)), in contrast to the Néel temperature, which was decreased owing to the weaker superexchange interactions between the tetrahedral and octahedral sites within the spinel structure. In order to evaluate the performance of these nanoprobes as a possible bifunctional targeting system, the (1)H NMR relaxation of the samples was tested together with their specific loss power under an alternating magnetic field as a function of concentration. The hydrophobic as prepared MnFe2O4 nanoparticles converted to hydrophilic nanoparticles with cetyltrimethylammonium bromide (CTAB). The MnFe2O4 nanoparticles, well-dispersed in aqueous media, were shown to have r2 relaxivity of up to 345.5 mM(-1) s(-1) and heat release of up to 286 W g(-1), demonstrating their potential use for bioapplications.
Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.
The development of a single-phase Fe/Mn oxy-hydroxide (δ-Fe0.76Mn0.24OOH), highly efficient at adsorbing both As(III) and As(V), is reported. Its synthesis involves the coprecipitation of FeSO4 and KMnO4 in a kilogram-scale continuous process, in acidic and strongly oxidizing environments. The produced material was identified as a manganese feroxyhyte in which tetravalent manganese is homogeneously distributed into the crystal unit, whereas a second-order hollow spherical morphology is favored. According to this structuration, the oxy-hydroxide maintains the high adsorption capacity for As(V) of a single Fe oxy-hydroxide combined with enhanced As(III) removal based on the oxidizing mediation of Mn(IV). Ion-exchange between arsenic species and sulfates as well as the strongly positive surface charge further facilitate arsenic adsorption. Batch adsorption tests performed in natural-like water indicate that Mn(IV)-feroxyhyte can remove 11.7 μg As(V)/mg and 6.7 μg As(III)/mg at equilibrium pH 7, before residual concentration overcomes the regulation limit of 10 μg As/L for drinking water. The improved efficiency of this material, its low cost, and the possibility for scaling-up its production to industry indicate the high practical impact and environmental importance of this novel adsorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.