A study was conducted to characterize lipid profiles in the M. longissimus thoracis of commercial Brazilian beef and to assess how those profiles are influenced by finishing system, genetic group, and their interaction. Intramuscular fat (IMF) and fatty acid (FA) profiles were determined in 160 bulls of the Bos taurus (n = 75) and Bos indicus (n = 85) genetic groups, finished on pasture (n = 46) or with grain supplementation (n = 114) and slaughtered in a commercial abattoir. Finishing system had a major impact on the deposition of IMF, as well as on the concentration of SFA, PUFA, and their ratio, but genetic groups showed important differences in the ability to convert SFA into cis-9 MUFA and to convert 16:0 into 18:0. When compared with pasture-finished animals, those finished with grain had greater content of IMF and SFA (P < 0.01), similar amounts of MUFA (P > 0.05), and about one-half the amount of PUFA (P < 0.01). Except for MUFA, differences in FA profiles among finishing systems were mostly mediated through their effect on IMF, even though the relationship of IMF with groups of FA differed among finishing systems. Under grain finishing, B. taurus had less SFA and greater MUFA than B. indicus (P < 0.01), but no differences were observed in PUFA (P > 0.05). With pasture-finishing, no differences were observed among the 2 genetic groups in SFA and MUFA (P > 0.05), but PUFA were decreased in B. taurus (P < 0.01). When genetic groups were compared in grain-finishing, B. taurus had a decreased ability for elongation and B. indicus had a decreased aptitude for desaturation of FA. On the other hand, with pasture-finishing a greater deposition of intermediate FA from ruminal biohydrogenation was observed in B. indicus than in B. taurus. Overall, FA profiles were affected more by finishing system in B. indicus than in B. taurus.
Bos indicus (n ¼ 67) and crossbred Bos taurus  Bos indicus (n ¼ 67) bulls were finished in extensive or intensive conditions to evaluate the effect of genetic differences and finishing system on the fatty acid (FA) composition of intramuscular fat. Finishing system had a more pronounced effect on FA profiles than the genetic group, but the two factors often interacted for both individual and groups of FA. When compared with animals finished intensively, those finished on pasture produced meat with higher concentration of CLA and polyunsaturated n-3 FA, in particular of 18:3, 20:5 and 22:5. Meat from animals finished intensively had higher amounts of 14:0, 16:0, 18:1 trans-10, 18:1 trans-11, monounsaturated trans FA and 18:2. When the two genetic groups were compared under intensive finishing, B. indicus animals showed lower amounts of 20:4 (synthesised from 18:2) and 20:5 (synthesised from 18:3), suggesting that they may have a lower ability in biochemical pathways involved in the metabolism of n-6 and n-3 long chain fatty acids. Overall, meat from animals finished on pasture had a higher amount of the FA considered desirable for human health. ARTICLE HISTORY
Meat obtained under commercial conditions shows considerable variability, mostly due to genetic background and production system. In this study, meat physicochemical properties and fatty acid profiles were analysed to investigate the feasibility of using them as tools to discriminate between meats produced by different genetic groups and finishing systems. Samples of the Longissimus thoracis were collected from 160 commercial bulls of the B. taurus (n = 75) and B. indicus (n = 85) groups, finished either on pasture (n = 46) or with grain supplementation (n = 114) and analysed by standard procedures. Data were analysed by discriminant analysis using a stepwise procedure, to select the meat characteristics that better contribute to discriminate the various groups. Our results indicate that fatty acid profiles of meat had better discriminating ability than physicochemical properties, especially to identify meat from animals finished on grain or pasture. The overall discrimination of meat from different genetic groups was achieved with a slightly lower reliability. Nonetheless, our results show that reliability of allocation to genetic group can be improved if prior information on finishing system is considered. These results are of high importance because they can be incorporated as tools to assess the authenticity of beef, particularly in meat certification programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.