A lattice strain of 0.3%–1.3% is achieved in epitaxial tetragonal BaTiO3 films grown on (001)-oriented SrTiO3 single-crystal substrates. Our experimental studies of absorption spectra in the range of 0.74–9.0 eV demonstrate that epitaxy produces significant changes in the optical properties of the films compared with those of a reference polydomain BaTiO3 crystal: the absorption edge and the peak at 5 eV strongly blue-shift by 0.2–0.4 eV, the magnitude of the peak at 5 eV drops, and certain spectral features disappear, whereas the absorption peak at 8.5 eV remains unchanged. The observed behavior is attributed to ferroelectric polarization, which is enhanced by epitaxial strain in the films. Our results indicate that epitaxially induced variations of ferroelectric polarization may be used to tailor the optical properties of thin films for photonic and optoelectronic applications.
The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15–4.30 eV and differ by 0.2–0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.