Cermets with a nominal composition (Ti 0.8 Ta 0.2 C 0.5 N 0.5 -20 wt% Co) were synthesised by a mechanically induced self-sustaining reaction (MSR) process from stoichiometric elemental powder blends. The MSR allowed the production of a complex (Ti,Ta)(C,N) solid solution, which was the raw material used for the sintering process. The pressureless sintering process was performed at temperatures between 1400 ºC and 1600 ºC in an inert atmosphere. The microstructural characterisation showed a complex microstructure composed of a ceramic phase with an unusual inverse core-rim structure and a Ti-Ta-Co intermetallic phase that acted as the binder.
A compaction device was developed to obtain radial graded porosity Ti cylinders, suitable for biomedical applications.• The powder metallurgy space-holder technique was applied for that purpose, guaranteeing the structural integrity of the Ti cylinders. • The microstructure obtained is a new bio-inspired/biomimetic approach to solve the bone resorption due to the stress-shielding phenomenon.
Titanium-tantalum carbonitride, (Ti,Ta)(C,N), based cermets with different Ti and Ta contents were prepared using a mechanically induced self-sustaining reaction and then densified using a pressureless sintering process. Complete microstructural and mechanical characterizations were performed on the materials, which revealed that the size of the carbonitride ceramic particle was significantly reduced when the Ta content was increased. The flexural strength and fracture toughness were measured using the ball on three balls test and the indentation microfracture test, respectively. The strength profile was analyzed under the framework of Weibull theory. The change in the mechanical properties as a function of the Ta content was correlated with the normalized microstructural parameters, such as the binder mean free path. The decrease in toughness and flexural strength was attributed to the presence of intermetallic compounds in the binder phase, which was also corroborated by the nanoindentation tests.
Ti,Ta)(C,N) solid solution-based cermets with cobalt as the binder phase were synthesised by a two-step milling process. The titanium-tantalum carbonitride solid solution (the ceramic phase) was obtained via a mechanically induced self-sustaining reaction (MSR) process from stoichiometric elemental Ti, Ta, and graphite powder blends in a nitrogen atmosphere. Elemental Co (the binder phase) was added to the ceramic phase, and the mixture was homogenised by mechanical milling (MM). The powdered cermet was then sintered in a tubular furnace at temperatures ranging from 1400 °C to 1600 °C in an inert atmosphere. The chemical composition and microstructure of the sintered cermets were characterised as ceramic particles grown via a coalescence process and embedded in a complex (Ti,Ta)-Co intermetallic matrix. The absence of the typical core-rim microstructure was confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.