Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which G(E)(p) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.
Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G(E)/G(M), obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e[over →],e(')p[over →]) reaction for three different beam energies at a Q(2)=2.5 GeV(2), spanning a wide range of the kinematic parameter ε. The ratio R, which equals μ(p)G(E)/G(M) in the Born approximation, is found to be independent of ε at the 1.5% level. The ε dependence of the longitudinal polarization transfer component P(ℓ) shows an enhancement of (2.3±0.6)% relative to the Born approximation at large ε.
We report new measurements of the ratio of the electric form factor to the magnetic form factor of the neutron, G n E /G n M , obtained via recoil polarimetry from the quasielastic 2 H( e, e ′ n) 1 H reaction at Q 2 values of 0.45, 1.13, and 1.45 (GeV/c) 2 with relative statistical uncertainties of 7.6 and 8.4% at the two higher Q 2 points, which were not reached previously via polarization measurements. Scale and systematic uncertainties are small.
Challenges in the global QCD analysis of parton structure of nucleons AIP Conf.Electron-momentum spectroscopy of solids by the (e,2e) reaction AIP Conf.Abstract. Constraining the d PDF at large values of x has traditionally relied, in part, on the use of deeply inelastic lepton deuterium scattering data. In order to utilize such data, one must include nuclear corrections which account for Fermi motion, binding, and off-shell effects. The impact of these corrections in the context of a global fit are examined. The uncertainties due to these nuclear effects are large.
A spectroscopy of a 10 Λ Be hypernucleus was carried out at JLab Hall C using the (e, e ′ K + ) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ∼ 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p(e, e ′ K + )Λ,Σ 0 reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1 − and 2 − states) was obtained to be B Λ = 8.55 ± 0.07(stat.) ± 0.11(sys.) MeV. The result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on Charge Symmetry Breaking (CSB) effect in the ΛN interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.