The time structure of leg movements occurring in conjunction with respiratory events exhibit features of periodic leg movements in sleep occurring alone, only with a different and longer period. This brings into question the validity, both biologic and clinical, of scoring conventions with their a priori exclusion from consideration as periodic leg movements in sleep.
Somatosensory evoked potential (SEP) monitoring is a standard tool during clipping of aneurysms of the middle cerebral artery (MCA), and the parameter used to detect a state of cortical ischemia is amplitude. We think that the sensitivity of SEP can however be improved by using other parameters. Our study moves in this direction via SEP morphology. In this pilot preliminary study, involving a small sample without postoperative neurological deficit, we aimed at investigating the value of SEP morphology (in the 15- to 35-ms time frame), in comparison with SEP amplitude (N20 peak-to-peak), as a measure of sensitivity to blood flow reduction. The changes in the SEP morphology of 16 patients undergoing clipping of an unruptured MCA aneurysm was studied. We applied the Morph-Fréchet index for each recorded SEP (at 30-second intervals), quantifying the pattern shape change with regard to the average SEP recorded after dura opening (baseline). We also compared 3 measurements of the SEP morphology, without and with GARCH-derived filter. Filtered Morph-Fréchet never exceeded the individual’s “normality” range in baseline but did so in 81% of the risk phase on average across the 16 subjects, which is more than that for amplitude (36%, P = .002). This pilot study indicates that a measurement derived from the networking nature of the brain was sensitive to blood flow reduction. The SEP morphology approach promises to improve SEP monitoring sensitivity during clipping of unruptured MCA aneurysms. New and Noteworthy. The higher sensitivity to blood flow reduction of SEP morphology than amplitude promises to improve the effectiveness of intraoperative monitoring during MCA aneurysm clipping procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.