High pressure processing is mainly used to eliminate pathogenic microorganisms and extend the shelf-life of dry-cured hams, but it also modifies its texture. These changes might be different depending on the initial textural characteristics. In this study, texture, colour and colour stability were evaluated after pressurization at 600 MPa during 6 min at 7 ºC, 20 ºC and 35 ºC in samples with different textural characteristics (no pastiness, medium and high pastiness groups). HP treatments produced an increase of hardness (F 0) and lightness (L*) values and a decrease of softness/pastiness (Y 2 and Y 90) and redness (a*) values at any processing temperatures. However, the increase of F 0 and L* values was more pronounced in non-pasty samples. In samples with high pastiness and softness, HP processing at high temperature (35ºC) reduced the intensity of pastiness. However, texture of hams with non-pasty texture might be negatively affected. Therefore, the optimal temperature of HP processing depends on the textural characteristics of dry-cured hams.
There is a new trend to produce dry-cured ham from lamb in shorter times by boning the ham before salting to later obtain restructured hams that are easier to dry and slice. However, little information about the physicochemical characteristics of Norwegian Fenalårs during the process or the safety implications of their elaboration procedures is reported in the literature. The aim of this study was to characterize the colour, texture and physicochemical properties of restructured Fenalårs when using Standard Salting (SS), Salt Reduced (SR) and a Non-Nitrite Salt Reduced (NNSR) treatments. Microbiological safety implications of the elaboration process when using the different salting treatments were also assessed using predictive microbiology. To do so, sixty Fenalårs were elaborated using a Standard Salting (SS), a Salt reduced (SR) and a Non-Nitrite Salt Reduced (NNSR) treatments. Physicochemical characterization (instrumental colour and texture and Zinc Protoporphyrin content) was performed at the end of the process using thirty Fenalårs. The rest of the Fenalårs were used to characterize the product through the elaboration process (pH and aw) for the evaluation of microbiological hazards when using the different salting treatments using predictive microbiology. Results showed a significant increase in softness when reducing salt content and a decrease of redness when no nitrite was used, attributed to the formation of ZnPP content instead of nitrosylmyoglobin. In terms of risk assessment, the decrease of aw through the elaboration process reduced the growth capacity of all the microorganisms evaluated. However, microbiological safety implications in salt reduced Fenalårs are important, especially when no nitrite was added, because the considerable increase of growth potential of L. monocytogenes. The increase of growth potential of proteolytic C. botulinum is very little and no relevant effect of nitrite on growth potential of S. aureus was observed. Predictive microbiology and optimization of the process to enhance ZnPP formation can help to ensure safety and quality of salt reduced restructured Fenalårs without additives.
Innovative feeding strategies tend to improve the quality properties of raw material and dry-cured products. In the present study, Norwegian White female lambs (n = 24) were finished during 35 days on three different diets: control (CD), control supplemented with seaweed (5% DM) (SD), and pasture (PD). The quality of raw meat (Semimembranosus + Adductor) and deboned dry-cured lamb leg (fenalår; n = 24) was studied. The heme, SFA, MUFA, and PUFA content in raw meat was not affected with finishing diet. The SD significantly increased the selenium, iodine, and arsenic content in raw meat and in the dry-cured leg the iodine and arsenic. The dry-cured leg from SD-lamb had the highest amount of iodine with 130 µg I/100 g which corresponds to 60% of Adequate Intake. Aldehydes, ketones, and esters in raw meat and dry-cured lamb leg were significantly affected by finishing diet; CD showed increased esters in raw meat and aldehydes in the dry-cured leg compared to SD and PD. The significantly higher content of simple sugars, mannose being the most dominant, was found in the dry-cured leg from SD-lamb compared to CD and PD. Finishing diets had no effect on the taste profile of dry-cured lamb leg. This study showed the potential of seaweed in iodine biofortification of lamb meat and dry-cured products. Iodine-rich meat products should reduce iodine-deficiency among humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.