In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life.
Context. The synthesis of water is one necessary step in the origin and development of life. It is believed that pristine water is formed and grows on the surface of icy dust grains in dark interstellar clouds. Until now, there has been no experimental evidence whether this scenario is feasible or not on an astrophysically relevant template and by hydrogen and oxygen atom reactions. Aims. We present here the first experimental evidence of water synthesis by such a process on a realistic analogue of grain surface in dense clouds, i.e., amorphous water ice. Methods. Atomic beams of oxygen and deuterium are aimed at a porous water ice substrate (H 2 O) held at 10 K. Products are analyzed by the temperature-programmed desorption technique. Results. We observe the production of HDO and D 2 O, indicating that water is formed under conditions of the dense interstellar medium from hydrogen and oxygen atoms. This experiment opens up the field of a little explored complex chemistry that could occur on dust grains,which is believed to be the site where key processes lead to the molecular diversity and complexity observed in the Universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.