A search for the rare decays B 0 s ! þ À and B 0 ! þ À is performed at the LHCb experiment. The data analyzed correspond to an integrated luminosity of 1 fb À1 of pp collisions at a center-of-mass energy of 7 TeV and 2 fb À1 at 8 TeV. An excess of B 0 s ! þ À signal candidates with respect to the background expectation is seen with a significance of 4.0 standard deviations. A time-integrated branching fraction of BðB 0 s ! þ À Þ ¼ ð2:9 þ1:1 À1:0 Þ Â 10 À9 is obtained and an upper limit of BðB 0 ! þ À Þ < 7:4 Â 10 À10 at 95% confidence level is set. These results are consistent with the standard model expectations.
A broad peaking structure is observed in the dimuon spectrum of B+ → K+ μ+ μ- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ → K+ μ+ μ- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9) MeV/c2 and 65(-16)(+22) MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ψ(4160) meson. First observations of both the decay B+ → ψ(4160)K+ and the subsequent decay ψ(4160) → μ+ μ- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770 MeV/c2. This contribution is larger than theoretical estimates.
Direct and mixing-induced CP -violating asymmetries in B 0 s → K + K − decays are measured for the first time using a data sample of pp collisions, corresponding to an integrated luminosity of 1.0 fb −1 , collected with the LHCb detector at a centre-of-mass energy of 7 TeV. The results are C KK = 0.14 ± 0.11 ± 0.03 and S KK = 0.30 ± 0.12 ± 0.04, where the first uncertainties are statistical and the second systematic. The corresponding quantities are also determined for B 0 → π + π − decays to be C ππ = −0.38 ± 0.15 ± 0.02 and S ππ = −0.71 ± 0.13 ± 0.02, in good agreement with existing measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.