A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo , genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis.
SIGNIFICANCE:Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These fi ndings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.
Under certain conditions, solutions of the boundary value problem y (n) = f (x,y, y ,. .. , y (n−1)), y (i−1) (x 1) = y i for 1 ≤ i ≤ n−1, and y(x 2)− m i=1 r i y(η i) = y n , are differentiated with respect to boundary conditions, where a < x
Human telomeres are bound by the telomere repeat binding proteins TRF1 and TRF2. Telomere shortening in human cells leads to a DNA damage response that signals replicative senescence. While insufficient loading of TRF2 at shortened telomeres contributes to the DNA damage response in senescence, the contribution of TRF1 to senescence induction has not been determined. Here we show that counter to TRF2 deficiency-mediated induction of DNA damage, TRF1 deficiency serves a protective role to limit induction of DNA damage induced by subtelomere recombination. Shortened telomeres recruit insufficient TRF1 and as a consequence inadequate tankyrase 1 to resolve sister telomere cohesion.The persistent cohesion protects short telomeres from inappropriate recombination. Ultimately, in the final division, telomeres are no longer able to maintain cohesion and subtelomere copying ensues. Thus, the gradual loss of TRF1 and concomitant persistent cohesion that occurs with telomere shortening ensures a measured approach to replicative senescence.
A hallmark of metastasis is the adaptation of tumor cells to new environments. Although it is well established that the metabolic milieu of the brain is severely deprived of nutrients, particularly the amino acids serine and its catabolite glycine, how brain metastases rewire their metabolism to survive in the nutrient-limited environment of the brain is poorly understood. Here we demonstrate that cell-intrinsic de novo serine synthesis is a major determinant of brain metastasis. Whole proteome comparison of triple-negative breast cancer (TNBC) cells that differ in their capacity to colonize the brain reveals that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is the most significantly upregulated protein in cells that efficiently metastasize to the brain. Genetic silencing or pharmacological inhibition of PHGDH attenuated brain metastasis and improved overall survival in mice, whereas expression of catalytically active PHGDH in a non-brain trophic cell line promoted brain metastasis. Collectively, these findings indicate that nutrient availability determines serine synthesis pathway dependence in brain metastasis, and suggest that PHGDH inhibitors may be useful in the treatment of patients with cancers that have spread to the brain.
Statement of SignificanceOur study highlights how limited serine and glycine availability within the brain microenvironment potentiates tumor cell sensitivity to serine synthesis inhibition. This finding underscores the importance of studying cancer metabolism in physiologically-relevant contexts, and provides a rationale for using PHGDH inhibitors to treat brain metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.