Klebsiella spp. are a common cause of mastitis, milk loss, and culling on dairy farms. Control of Klebsiella mastitis is largely based on prevention of exposure of the udder to the pathogen. To identify critical control points for mastitis prevention, potential Klebsiella sources and transmission cycles in the farm environment were investigated, including oro-fecal transmission, transmission via the indoor environment, and transmission via the outdoor environment. A total of 305 samples was collected from 3 dairy farms in upstate New York in the summer of 2007, and included soil, feed crops, feed, water, rumen content, feces, bedding, and manure from alleyways and holding pens. Klebsiella spp. were detected in 100% of rumen samples, 89% of water samples, and approximately 64% of soil, feces, bedding, alleyway, and holding pen samples. Detection of Klebsiella spp. in feed crops and feed was less common. Genotypic identification of species using rpoB sequence data showed that Klebsiella pneumoniae was the most common species in rumen content, feces, and alleyways, whereas Klebsiella oxytoca, Klebsiella variicola, and Raoultella planticola were the most frequent species among isolates from soil and feed crops. Random amplified polymorphic DNA-based strain typing showed heterogeneity of Klebsiella spp. in rumen content and feces, with a median of 4 strains per 5 isolates. Observational and bacteriological data support the existence of an oro-fecal transmission cycle, which is primarily maintained through direct contact with fecal contamination or through ingestion of contaminated drinking water. Fecal shedding of Klebsiella spp. contributes to pathogen loads in the environment, including bedding, alleyways, and holding pens. Hygiene of alleyways and holding pens is an important component of Klebsiella control on dairy farms.
Total mixed rations containing brown midrib sorghum-sudangrass silage (bmrSS) or corn silage (CS) at either 35 or 45% of dietary dry matter were fed to Holstein dairy cows to determine the effect on lactational performance and nutrient digestibility. Twelve cows were assigned to 1 of 4 diets in replicated 4 x 4 Latin squares with 21-d periods. In vitro 30-h neutral detergent fiber digestion, measured before the start of the trial, was 46.0% for CS and 58.3% for bmrSS. Dry matter intake was greatest when cows were fed the 35% CS (23.4 kg/d) and 45% CS (23.2 kg/d) diets, was least when cows were fed the 45% bmrSS diet (17.6 kg/d), and was intermediate when cows were fed the 35% bmrSS diet (20.1 kg/d). The bmrSS diets resulted in greater body weight gain per 21-d period but similar body condition scores compared with the CS diets. Yield of solids-corrected milk (SCM) was similar among the diets. Efficiency (SCM:dry matter intake) was 28% greater for cows fed the bmrSS than those fed the CS diets. In vivo digestibilities of organic matter and crude protein were greater for the CS diets than the bmrSS diets, but total tract digestibilities of neutral detergent fiber and starch were similar among diets. Ruminal pH was greater when cows were fed the 45% bmrSS diet (6.58), was least when cows were fed the 35% CS (6.10) and 45% CS diets (6.13), and was intermediate when cows were fed the 35% bmrSS diet (6.42). The ratio of acetate to propionate was greater for the bmrSS diets (2.77) than for the CS diets (2.41), with no difference among diets in total volatile fatty acid concentrations (122 mM). In conclusion, cows fed bmrSS had greater efficiency of SCM production, higher ruminal pH, and greater acetate to propionate ratios than cows fed CS. With these diets fed in a short-term study, bmrSS appeared to be an effective alternative to the CS hybrid when fed at either 35 or 45% of dietary dry matter.
Three corn hybrids, Mycogen TMF94, Cargill F337 (which contains a brown midrib trait), and Pioneer 3861 were compared in a plot trial, an intake trial, and a lactation trial. In the plot trial, the three corn hybrids were planted in replicated 15.2 x 385-m plots. Mycogen TMF94 and Cargill F337 had lower yields of dry matter (DM), higher concentrations of neutral detergent fiber, and higher in vitro true DM disappearance compared with Pioneer 3861. Mycogen TMF94 had a higher yield of DM than Cargill F337 despite having a lower plant population. However, Cargill F337 had a higher in vitro true DM disappearance than Mycogen TMF94. In the intake trial, six individually penned Holstein heifers were blocked and assigned randomly to one of three total mixed rations containing 79% (DM basis) Mycogen TMF94, Cargill F337, or Pioneer 3861 corn silages in replicated 3 x 3 Latin squares. Heifers fed the Pioneer 3861-based TMR had lower DMI than heifers fed Mycogen TMF94 and Cargill F337-based TMR. In the lactation trial, 75 midlactation Holstein cows were blocked and assigned randomly to one of three total mixed rations containing 31% (DM basis) Mycogen TMF94, Cargill F337, or Pioneer 3861 corn silages used in the intake trial. Milk production was highest for cows fed Cargill F337-based total mixed rations. It is concluded from this study that Mycogen TMF94 was higher yielding, but less digestible, and resulted in lower milk production by lactating cows than Cargill F337. In addition, Mycogen TMF94 had higher in vitro true DM disappearance, and similar DM yield and milk production by lactating cows when compared with Pioneer 3861.
A study was undertaken to compare Novartis N29-F1, a dual-purpose 90-d relative maturity corn hybrid, and Novartis NX3018, a 90-d relative maturity leafy corn silage hybrid for dry matter (DM) yield, in vitro digestibility, plant components, nutrient composition, and lactational performance by Holstein cows. The two corn hybrids were planted in replicated 15.2- x 321-m plots. Plant population and DM yield were similar between the two corn hybrids. Novartis NX3018 had higher content of crude protein and ash, a higher proportion of leaves and stalks, and a lower proportion of grain compared with Novartis N29-F1. The cob, grain, and leaves of Novartis NX3018 had higher in vitro true DM and neutral detergent fiber disappearances compared with the respective plant components of Novartis N29-F1. Thirty-eight midlactation multiparous Holstein cows (78 +/- 23.0 days in milk) producing 47.2 +/- 8.9 kg of milk per cow per day were blocked and assigned randomly to one of two total mixed ration (TMR) containing (DM basis) approximately 26% Novartis N29-F1 or Novartis NX3018 corn silage. Cows were housed in a free-stall barn and group fed ad libitum. The lactation study was conducted as a crossover design with two 28-d periods. Samples and data were collected during the final 7 d of each period. The total mixed rations were formulated using the Cornell-Penn-Miner Dairy nutrition model. Cows that were fed the total mixed rations containing Novartis NX3018 corn silage produced higher yields of milk 3.5% fat-corrected milk (FCM), milk crude protein, and milk lactose compared to cows that were fed the TMR containing Novartis N29-F1 corn silage. In conclusion, the Novartis NX3018 corn hybrid was leafier and more digestible in vitro, and when fed to dairy cows as silage, promoted higher milk yield compared with the Novartis N29-F1 corn hybrid.
A gronomy J our n al • Volu me 102 , I s sue 2 • 2 010 815 ABSTRACT Dairy producers use footbaths containing CuSO 4 for the prevention of papillomatous digital dermatitis. Aft er cows (Bos taurus) have passed through the footbath, waste is usually disposed of into manure storages and applied to fi elds. Th e objectives of this research were to evaluate the eff ects of the application of high-Cu dairy manure on growth and yield of corn (Zea mays L.) for silage and to evaluate the accumulation of Cu in the soil. Manure was collected, CuSO 4 was added, and all plots received approximately 105.9 L of manure (53,572 L ha -1 ). A control (0.38 kg Cu ha -1 ), medium Cu (9.5 kg Cu ha -1 ), and high Cu (18.6 kg Cu ha -1 ) treatments were applied to the same plots in 2006 and 2007. An early maturity and late maturity corn hybrid was used each year. Soil samples from 0 to 15 cm were analyzed for solution, extractable, and total Cu. Soil samples from 15 to 46 cm were analyzed for solution and total Cu. Th e growth, yield, forage quality, and Cu concentration of corn were not aff ected by treatments. Soil extractable and total soil Cu increased linearly as Cu application increased (P < 0.001). Soil solution Cu increased as Cu treatment rate increased, but was not linear (P = 0.04). Solution and total soil Cu were not diff erent as sampling depth increased. Two annual applications of high-Cu dairy manure at rates relative to agronomic practices did not aff ect corn grown for silage and resulted in no vertical movement of Cu in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.