A cavity optomechanical magnetometer is demonstrated. The magnetic field induced expansion of a magnetostrictive material is resonantly transduced onto the physical structure of a highly compliant optical microresonator, and read-out optically with ultra-high sensitivity. A peak magnetic field sensitivity of 400 nT Hz −1/2 is achieved, with theoretical modeling predicting the possibility of sensitivities below 1 pT Hz −1/2 . This chipbased magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation.Ultra-low field magnetometers are essential components for a wide range of practical applications including geology, mineral exploration, archaeology, defence and medicine [1]. The field is dominated by superconducting quantum interference devices (SQUIDs) operating at cryogenic temperatures [2]. Magnetometers capable of room temperature operation offer significant advantages both in terms of operational costs and range of applications. The state-of-the-art are magnetostrictive magnetometers with sensitivities in the range of fT Hz −1/2 [3, 4], and atomic magnetometers which achieve impressive sensitivities as low as 160 aT Hz −1/2 [5] but with limited dynamic range due to the nonlinear Zeeman effect [2,6]. Recently, significant effort has been made to miniaturize room temperature magnetometers. However both atomic and magnetostrictive magnetometers remain generally limited to millimeter or centimeter size scales. Smaller microscale magnetometers have many potential applications in biology, medicine, and condensed matter physics [7,8]. A particularly important application is magnetic resonance imaging, where by placing the magnetometer in close proximity to the sample both sensitivity and resolution may be enhanced [9], potentially enabling detection of nuclear spin noise [10], imaging of neural networks [7], and advances in areas of medicine such as magneto-cardiography[1, 6] and magneto-encephalography [11].In the past few years, rapid progress has been achieved on NV center based magnetometers. They combine sensitivities as low as 4 nT Hz −1/2 with room temperature operation, optical readout and nanoscale size [12] and are predicted theoretically to reach the fT Hz −1/2 range [13]. This has allowed three-dimensional magnetic field imaging at the micro scale using ensembles of NV-centers [7], and magnetic resonance [14] and field imaging[13] at the nanoscale using single NV centers. In spite of these extraordinary achievements applications are hampered by fabrication issues and the intricacy of the read-out schemes [15]. Furthermore miniaturization is limitied by the bulky read-out optics, the magnetic field coils for state preparation and the microwave excitation device [7].In this letter we present the concept of a cavity optomechanical field sensor which combines room temperature operation and high sensitivity with large dynamic range and small size. The sensor leverages results from the emergent field of cavity optomechanics where ultra-sensitive force and positi...
Recently, measurements of oxygen concentration in the ocean-one of the most classical parameters in chemical oceanography-are experiencing a revival. This is not surprising, given the key role of oxygen for assessing the status of the marine carbon cycle and feeling the pulse of the biological pump. The revival, however, has to a large extent been driven by the availability of robust optical oxygen sensors and their painstakingly thorough characterization. For autonomous observations, oxygen optodes are the sensors of choice: They are used abundantly on Biogeochemical-Argo floats, gliders and other autonomous oceanographic observation platforms. Still, data quality and accuracy are often suboptimal, in some part because sensor and data treatment are not always straightforward and/or sensor characteristics are not adequately taken into account. Here, we want to summarize the current knowledge about oxygen optodes, their working principle as well as their behavior with respect to oxygen, temperature, hydrostatic pressure, and response time. The focus will lie on the most widely used and accepted optodes made by Aanderaa and Sea-Bird. We revisit the essentials and caveats of in-situ in air calibration as well as of time response correction for profiling applications, and provide requirements for a successful field deployment. In addition, all required steps to post-correct oxygen optode data will be discussed. We hope this summary will serve as a comprehensive, yet concise reference to help people get started with oxygen observations, ensure successful sensor deployments and acquisition of highest quality data, and facilitate post-treatment of oxygen data. In the end, we hope that this will lead to more and higher-quality oxygen observations and help to advance our understanding of ocean biogeochemistry in a changing ocean.
We propose and investigate a technique for generating smooth two-dimensional potentials for ultra-cold atoms based on the rapid scanning of a far-detuned laser beam using a two-dimensional acousto-optical modulator (AOM). We demonstrate the implementation of a feed-forward mechanism for fast and accurate control of the spatial intensity of the laser beam, resulting in improved homogeneity for the atom trap. This technique could be used to generate a smooth toroidal trap that would be useful for static and dynamic experiments on superfluidity and persistent currents with ultra-cold atoms.
We observe the formation of shock waves in a Bose-Einstein condensate containing a large number of sodium atoms. The shock wave is initiated with a repulsive blue-detuned light barrier, intersecting the BoseEinstein condensate, after which two shock fronts appear. We observe breaking of these waves when the size of these waves approaches the healing length of the condensate. At this time, the wave front splits into two parts and clear fringes appear. The experiment is modeled using an effective one-dimensional Gross-Pitaevskiilike equation and gives excellent quantitative agreement with the experiment, even though matter waves with wavelengths two orders of magnitude smaller than the healing length are present. In these experiments, no significant heating or particle loss is observed.
We describe the setup to create a large Bose-Einstein condensate containing more than 120·10 6 atoms. In the experiment a thermal beam is slowed by a Zeeman slower and captured in a dark-spot magneto-optical trap (MOT). A typical dark-spot MOT in our experiments contains 2.0·10 10 atoms with a temperature of 320 µK and a density of about 1.0·10 11 atoms/cm 3 . The sample is spin polarized in a high magnetic field, before the atoms are loaded in the magnetic trap. Spin polarizing in a high magnetic field results in an increase in the transfer efficiency by a factor of 2 compared to experiments without spin polarizing. In the magnetic trap the cloud is cooled to degeneracy in 50 s by evaporative cooling. To suppress the 3-body losses at the end of the evaporation the magnetic trap is decompressed in the axial direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.