Genetic mapping of major genes and quantitative traits loci (QTLs) for many important agricultural traits is increasing the integration of biotechnology with the conventional breeding process. Exploitation of the information derived from the map position of traits with agronomical importance and of the linked molecular markers, can be achieved through marker assisted selection (MAS) of the traits during the breeding process. However, empirical applications of this procedure have shown that the success of MAS depends upon several factors, including the genetic base of the trait, the degree of the association between the molecular marker and the target gene, the number of individuals that can be analyzed and the genetic background in which the target gene has to be transferred. MAS for simply inherited traits is gaining increasing importance in breeding programs, allowing an acceleration of the breeding process. Traits related to disease resistance to pathogens and to the quality of some crop products are offering some important examples of a possible routinary application of MAS. For more complex traits, like yield and abiotic stress tolerance, a number of constraints have determined severe limitations on an efficient utilization of MAS in plant breeding, even if there are a few successful applications in improving quantitative traits. Recent advances in genotyping technologies together with comparative and functional genomic approaches are providing useful tools for the selection of genotypes with superior agronomical performancies.
Barley (Hordeum vulgare L.) leaf stripe is caused by the seed-borne fungus Pyrenophora graminea. We investigated microscopically and molecularly the reaction of barley embryos to leaf stripe inoculation. In the resistant genotype NIL3876-Rdg2a, fungal growth ceased at the scutellar node of the embryo, while in the susceptible near-isogenic line (NIL) Mirco-rdg2a fungal growth continued past the scutellar node and into the embryo. Pathogen-challenged embryos of resistant and susceptible NILs showed different levels of UV autofluorescence and toluidine blue staining, indicating differential accumulation of phenolic compounds. Suppression subtractive hybridization and cDNA amplified fragment-length polymorphism (AFLP) analyses of embryos identified P. graminea-induced and P. graminea-repressed barley genes. In addition, cDNA-AFLP analysis identified six pathogenicity-associated fungal genes expressed during barley infection but at low to undetectable levels during growth on artificial media. Microarrays representing the entire set of differentially expressed cDNA-AFLP fragments and 100 barley homologues of previously described defence-related genes were used to study gene expression changes at 7 and 14 days after inoculation in the resistant and susceptible NILs. A total of 171 significantly modulated barley genes were identified and assigned to four groups based on timing and genotype dependence of expression. Analysis of the changes in gene expression during the barley resistance response to leaf stripe suggests that the Rdg2a-mediated response includes cell-wall reinforcement, signal transduction, generation of reactive oxygen species, cell protection, jasmonate signalling and expression of plant effector genes. The identification of genes showing leaf stripe inoculation or resistance-dependent expression sets the stage for further dissection of the resistance response of barley embryo cells to leaf stripe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.