A study was made of the phylogenetic relationships between fifteen complete nucleotide sequences as well as 43 nucleotide sequences of the putative coat protein gene of different strains belonging to the virus species Beak and feather disease virus obtained from 39 individuals of 16 psittacine species. The species included among others, cockatoos ( Cacatuini), African grey parrots ( Psittacus erithacus) and peach-faced lovebirds ( Agapornis roseicollis), which were infected at different geographical locations, within and outside Australia, the native origin of the virus. The derived amino acid sequences of the putative coat protein were highly diverse, with differences between some strains amounting to 50 of the 250 amino acids. Phylogenetic analysis demonstrated that the putative coat gene sequences form six clusters which show a varying degree of psittacine species specificity. Most, but not all strains infecting African grey parrots formed a single cluster as did the strains infecting the cockatoos. Strains infecting the lovebirds clustered with those infecting such Australasian species as Eclectus roratus, Psittacula kramerii and Psephotus haematogaster. Although individual birds included in this study were, where studied, often infected by closely related strains, infection by highly diverged trains was also detected. The possible relationship between BFD viral strains and clinical disease signs is discussed.
The approximately 190-bp centromeric repeat monomers of the spur-winged lapwing (Vanellus spinosus, Charadriidae), the Chilean flamingo (Phoenicopterus chilensis, Phoenicopteridae), the sarus crane (Grus antigone, Gruidae), parrots (Psittacidae), waterfowl (Anatidae), and the merlin (Falco columbarius, Falconidae) contain elements that are interspecifically highly variable, as well as elements (trinucleotides and higher order oligonucleotides) that are highly conserved in sequence and relative location within the repeat. Such conservation suggests that the centromeric repeats of these avian species have evolved from a common ancestral sequence that may date from very early stages of avian radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.