Protective T cell responses elicited along chronic human CMV (HCMV) infections are sometimes dominated by CD8 T cell clones bearing highly related or identical public TCR in unrelated individuals. To understand the principles that guide emergence of these public T cell responses, we have performed structural, biophysical, and functional analyses of an immunodominant public TCR (RA14) directed against a major HLA-A*0201-restricted HCMV Ag (pp65495–503) and selected in vivo from a diverse repertoire after chronic stimulations. Unlike the two immunodominant public TCRs crystallized so far, which focused on one peptide hotspot, the HCMV-specific RA14 TCR interacts with the full array of available peptide residues. The conservation of some peptide-MHC complex-contacting amino acids by lower-affinity TCRs suggests a shared TCR-peptide-MHC complex docking mode and supports an Ag-driven selection of optimal TCRs. Therefore, the emergence of a public TCR of an oligoclonal Ag-specific response after repeated viral stimulations is based on a receptor displaying a high structural complementarity with the entire peptide and focusing on three peptide hotspots. This highlights key parameters underlying the selection of a protective T cell response against HCMV infection, which remains a major health issue in patients undergoing bone marrow transplantation.
The impact of MHC phenotype on the shaping of the peripheral naive T cell repertoire in humans remains unknown. To address this, we compared the frequency and antigenic avidity of naive T cells specific for immunodominant self-, viral, and tumor Ags presented by a human MHC class I allele (HLA-A*02, referred to as A2) in individuals expressing or not this allele. Naive T cell frequencies varied from one Ag specificity to another but were restrained for a given specificity. Although A2-restricted T cells showed similar repertoire features and antigenic avidities in A2+ and A2− donors, A2 expression had either a positive, neutral, or negative impact on the frequency of A2-restricted naive CD8 T cells, depending on their fine specificity. We also identified in all donors CD4 T cells specific for A2/peptide complexes, whose frequencies were not affected by MHC class I expression, but nevertheless correlated with those of their naive CD8 T cell counterparts. Therefore, both selection by self-MHC and inherent TCR reactivity regulate the frequency of human naive T cell precursors. Moreover this study also suggests that T cell repertoire shaping by a given self-MHC allele is dispensable for generation of immunodominant T cell responses restricted by this particular allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.