In order to study the influence of compressed carbon dioxide, over a range of pressures (1.5 to 5.5 MPa) and exposure times (up to 7 h), on the survival of Escherichia coli,Saccharomyces cerevisiae, and Enterococcus faecalis, a new pressurizable reactor system was conceived. Microbial cells were inoculated onto a solid hydrophilic medium and treated at room temperature; their sensitivities to inactivation varied greatly. The CO2 treatment had an enhanced efficiency in cell destruction when the pressure and the duration of exposure were increased. The effects of these parameters on the loss of viability was also studied by response-surface methodology. This study showed that a linear correlation exists between microbial inactivation and CO2 pressure and exposure time, and in it models were proposed which were adequate to predict the experimental values. The end point acidity was measured for all the samples in order to understand the mechanism of microbial inactivation. The pHs of the treated samples did not vary, regardless of the experimental conditions. Other parameters, such as water content and pressure release time, were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.