International audienceThis paper reports experimental results of planar shock waves interacting with aqueous foams in a horizontal conventional shock tube. Four incident shock wave Mach numbers are considered, ranging from 1.07 to 1.8, with two different foam columns of one meter thickness and expansion ratios of 30 and 80. High-speed flow visualizations are used along with pressure measurements to analyse the main physical mechanisms that govern shock wave mitigation in foams. During the shock/foam interaction, a precursor leading pressure jump was identified as the trace of the liquid film destruction stage in the foam fragmentation process. The corresponding pressure threshold is found to be invariant for a given foam. Regarding the mitigation effect, the results show that the speed of the shock is drastically reduced and that wetter is the foam, slower are the transmitted waves. The presence of the foam barrier attenuates the induced pressure impulse behind the transmitted shock, while the driest foam appears to be more effective, as it limits the pressure induced by the reflected shock off the foam front. Finally, it was found that the pressure histories in the two-phase gas-liquid mixture are different from those previously obtained within a cloud of droplets. The observed behavior is attributed to the process of foam fragmentation and to the modification of the flow topology past the shock. These physical phenomena occurring during the shock/foam interaction should be properly accounted for when elaborating new physical models. (C) 2015 AIP Publishing LLC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.