A new ITER-relevant lower hybrid current drive (LHCD) launcher, based on the passive-active-multijunction (PAM) concept, was brought into operation on the Tore Supra tokamak in autumn 2009. The PAM launcher concept was designed in view of ITER to allow efficient cooling of the waveguides, as required for long pulse operation. In addition, it offers low power reflection close to the cut-off density, which is very attractive for ITER, where the large distance between the plasma and the wall may bring the density in front of the launcher to low values. The first experimental campaign on Tore Supra has shown extremely encouraging results in terms of reflected power level and power handling. Power reflection coefficient <2% is obtained at low density in front of the launcher, i.e. close to the cut-off density, and very good agreement between the experimental results and the coupling code predictions is obtained. Long pulse operation at ITER-relevant power density has been demonstrated. The maximum power and energy reached so far is 2.7 MW during 78 s, corresponding to a power density of 25 MW m−2, i.e. its design value at f = 3.7 GHz. In addition, 2.7 MW has been coupled at a plasma–launcher distance of 10 cm, with a power reflection coefficient <2%. Finally, full non-inductive discharges have been sustained for 50 s with the PAM.
Three identical new WEST Ion Cyclotron Resonance Heating (ICRH) antennas have been designed, assembled then commissioned on plasma from 2013 to 2019. The WEST ICRH system is both load-resilient and compatible with long-pulse operations. The three antennas have been successfully operated together on plasma in 2019 and 2020. The load resilience capability has been demonstrated and the antenna feedback controls for phase and matching have been developed. The breakdown detection systems have been validated and successfully protected the antennas. The use of ICRH in combination with Lower Hybrid has triggered the first high confinement mode transitions identified on WEST.
Twelve ITER-like plasma-facing units made of tungsten were exposed in the WEST tokamak divertor, with three PFUs significantly overexposed to plasma heat flux: one sharp-edged PFU (vertical misalignment h = 0.8 mm) and two chamfered PFUs (h = 0.6 mm and 0.3 mm, respectively). This paper describes the first temperature analysis obtained with a very high spatial resolution infrared camera (pixel size ~ 0.1 mm) on the misaligned PFU edges and shows the consistency obtained on the parallel heat flux derived from these measurements. The analysis is focused on the hottest areas of the PFU misaligned leading edges, since the temperature detection threshold of the VHR camera is high (Tthreshold,BB ≈ 370°C). The heat flux parallel to the magnetic field lines is assessed by matching the toroidal temperature profile in the vicinity of the leading edge with 3D finite element modelling. The tungsten emissivity assumed in this study is 0.6, consistent with laboratory measurements for damaged PFUs. For the three PFUs studied (with different vertical misalignments, incident angles, geometries), the derived parallel heat flux is similar, and consistent with independent measurements by a Fiber Bragg grating embedded in a graphite PFU at another toroidal location, giving confidence in future experiments using the same settings.
Tore Supra routinely addresses the physics and technology of very long duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant LHCD launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current profile have been controlled in real time featuring i) control of sawteeth with varying plasma parameters, ii) obtaining and sustaining a "hot core" plasma regime, iii) recovery from a voluntarily triggered deleterious MHD regime. The SOL parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q=2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic field has been investigated, culminating in the demonstration that this conditioning scheme allows to recover normal operation after disruptions. Effect of the magnetic field ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results to predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density fluctuations, and wave-number spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent fluctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL.
The main results of the Tore Supra experimental programme in the years 2007-2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include: test and validation of a new, load-resilient concept of ICRH antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by ECCD in the presence of fast ion tails; ECRHassisted plasma startup studies; dimensionless scalings of transport and turbulence; transport experiments using active pertubation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.