Dumping of food wastes into the landfill resulted in major environmental pollution. However, attempted had been made to develop these wastes into a new renewable and sustainable energy. Liquid biofuels, bioethanol can be produced from a variety of feedstock including biomass and food crops or wastes. Therefore, in this study, starchy food wastes of bread, rice and potatoes were utilized as a potential feedstock for the bioethanol production. Yeast Saccharomyces cerevisiae was immobilized in 2% calcium alginate beads using entrapment technique. Then, the effect of temperature on bioethanol efficiency was investigated using the immobilized yeasts. From the result, highest fermentation efficiency of 1.24% was obtained at temperature 30°C, 48 h with agitation speed of 150 rpm. However, further research and studies are required in order to optimize the bioethanol production from fermentation process of starchy foodwastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.