The initial-value problem is studied for evolution equations in Hilbert
AMS(MOS)
78712.Sponsored by th.,
I!!The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Harnack inequalities for quasi-minima of variational integrals E. DI BENEDETTO
Í u, -div(|Z>u|"-2Z>«) \ u(x,0) = u0(x), Abstract. We consider the Cauchy problem i) = 0 in R* x (0, oo), p > 2, x€RN, and discuss existence of solutions in some strip St a HN x (0, T), 0 < T < oo , in terms of the behavior of x -* uo(x) as |x| -► oo . The results obtained are optimal in the class of nonnegative locally bounded solutions, for which a Harnack-type inequality holds. Uniqueness is shown under the assumption that the initial values are taken in the sense of ¿^.(R-^).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.