Background: Sleep hypoventilation has been proposed as a cause of progressive hypercapnic respiratory failure and death in patients with severe chronic obstructive pulmonary disease (COPD). A study was undertaken to determine the effects of nocturnal non-invasive bi-level pressure support ventilation (NIV) on survival, lung function and quality of life in patients with severe hypercapnic COPD. Method: A multicentre, open-label, randomised controlled trial of NIV plus long-term oxygen therapy (LTOT) versus LTOT alone was performed in four Australian University Hospital sleep/respiratory medicine departments in patients with severe stable smoking-related COPD (forced expiratory volume in 1 s (FEV 1.0 ) ,1.5 litres or ,50% predicted and ratio of FEV 1.0 to forced vital capacity (FVC) ,60% with awake arterial carbon dioxide tension (PaCO 2 ) .46 mm Hg and on LTOT for at least 3 months) and age ,80 years. Patients with sleep apnoea (apnoea-hypopnoea index .20/h) or morbid obesity (body mass index .40) were excluded. Outcome measures were survival, spirometry, arterial blood gases, polysomnography, general and disease-specific quality of life and mood. Results: 144 patients were randomised (72 to NIV + LTOT and 72 to LTOT alone). NIV improved sleep quality and sleep-related hypercapnia acutely, and patients complied well with therapy (mean (SD) nightly use 4.5 (3.2) h). Compared with LTOT alone, NIV (mean follow-up 2.21 years, range 0.01-5.59) showed an improvement in survival with the adjusted but not the unadjusted Cox model (adjusted hazard ratio (HR) 0.63, 95% CI 0.40 to 0.99, p = 0.045; unadjusted HR 0.82, 95% CI 0.53 to 1.25, p = NS). FEV
Sleep hypoventilation (SH) may be important in the development of hypercapnic respiratory failure in chronic obstructive pulmonary disease (COPD). The prevalence of SH, associated factors, and overnight changes in waking arterial blood gases (ABG), were assessed in 54 stable hypercapnic COPD patients without concomitant sleep apnoea or morbid obesity.Lung function assessment, anthropomorphic measurements, and polysomnography with ABG measurement before and after sleep were conducted in all patients. Transcutaneous carbon dioxide tension (Pt,CO2) was measured in sleep, using simultaneous arterial carbon dioxide tension (Pa,CO2) forin vivocalibration and to correct for drift in the sensor.Of the patients, 43% spent ≥20% of sleep time withPt,CO2>1.33 kPa (10 mmHg) above waking baseline. Severity of SH was best predicted by a combination of baselinePa,CO2, body mass index and per cent rapid-eye movement (REM) sleep. REM-related hypoventilation correlated significantly with severity of inspiratory flow limitation in REM, and with apnoea/hypopnoea index.Pa,CO2increased mean±sd 0.70±0.65 kPa (5.29±4.92 mmHg) from night to morning, and this change was highly significant. The change inPa,CO2was strongly correlated with severity of SH.Sleep hypoventilation is common in hypercapnic chronic obstructive pulmonary disease, and related to baseline arterial carbon dioxide tension, body mass index and indices of upper airway obstruction. Sleep hypoventilation is associated with significant increases in arterial carbon dioxide tension night-to-morning, and may contribute to long-term elevations in arterial carbon dioxide tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.