We consider the combinatorial vector minimax problem with ordered criteria. We formulate necessary and sufficient conditions for the five known types of stability of the problem which describe the behaviour of the lexicographic set with respect to perturbations of the initial data for the vector criterion.
We consider a vector (multicriteria) problem of Boolean programming in the case where the partial criteria are the absolute values of linear functions. We study the limit level of disturbances of the coefficients of criterion functions in the space with metrics l 1 which preserves the Pareto optimality of the solution. We obtain a necessary and sufficient condition for the stability radius of such a solution to be infinite.
The vector variant of the partition problem is considered. It is shown that the coincidence of the Pareto and Slater sets is the necessary and sufficient condition of stability of the problem with respect to its functional.
Рассматривается векторная (многокритериальная) задача булева программирования в случае, когда частными критериями являются модули линейных функций. Исследуется предельный уровень возмущений коэффициентов целевых функций в пространстве с метрикой l 1 , сохраняющих парето-оптимальность решения. Получено необходимое и достаточное условие, когда радиус устойчивости такого решения равен бесконечности. Работа выполнена при поддержке Государственной программы фундаментальных исследований "Математические структуры" Республики Беларусь, проект 913/28, и межвузовской программы "Фундаментальные и прикладные исследования" Республики Беларусь, проект 492/28.
A vector Boolean sequential minimization problem for absolute values of linear functions is considered. Necessary and sufficient condition for stability of this type that is a discrete analogue of the upper Hausdorff semicontinuity of a point-to-set mapping is established. This mapping associates a set of lexicographic optima with each set of problem parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.