We examine the effect of laser focusing on the effectiveness of a recently discussed scheme [M. F. Ciappina et al., Phys. Rev. A 99, 043405 (2019) and M. F. Ciappina and S. V. Popruzhenko, Laser Phys. Lett. 17, 025301 (2020)] for in situ determination of ultrahigh intensities of electromagnetic radiation delivered by multi-petawatt laser facilities. Using two model intensity distributions in the focus of a laser beam, we show how the resulting yields of highly charged ions generated in the process of multiple sequential tunneling of electrons from atoms depend on the shapes of these distributions. Our findings lead to the conclusion that an accurate extraction of the peak laser intensity can be made either in the near-threshold regime, when the production of the highest charge state happens only in a small part of the laser focus close to the point where the intensity is maximal or through the determination of the points where the ion yields of close charges become equal. We show that for realistic parameters of the gas target, the number of ions generated in the central part of the focus in the threshold regime should be sufficient for a reliable measurement with highly sensitive time-of-flight detectors. Although the positions of the intersection points generally depend on the focal shape, they can be used to localize the peak intensity value in certain intervals. Finally, the slope of the intensity-dependent ion yields is shown to be robust with respect to both the focal spot size and the spatial distribution of the laser intensity in the focus. When these slopes can be measured, they will provide the most accurate determination of the peak intensity value within the considered tunnel ionization scheme. In addition to this analysis, we discuss the method in comparison with other recently proposed approaches for direct measurement of extreme laser intensities.
We examine the effect of laser focusing on the potential of a recently discussed scheme [M.F. Ciappina et al, Phys. Rev. A 99, 043405 (2019); Las. Phys. Lett. 17, 025301 (2020)] for in situ determination of ultra-high intensities of electromagnetic radiation delivered by multi-petawatt laser facilities. Using two model intensity distributions in the focus of a laser beam, we show how the resulting yields of highly charged ions generated in the process of multiple sequential tunneling of electrons from atoms, depend on the shape of these distributions. Our findings lead to the conclusion that an accurate extraction of the peak laser intensity can be made either in the nearthreshold regime when the production of the highest charge state happens only in a small part of the laser focus close to the point where the intensity is maximal, or through the determination of the points where the ion yields of close charges become equal. We show that, for realistic parameters of the gas target, the number of ions generated in the central part of the focus in the threshold regime should be sufficient for a reliable measurement with highly sensitive time-of-flight detectors. Although positions of the intersection points generally depend on the focal shape, they can be used to localize the peak intensity value in a certain interval. Additionally to this analysis, we discuss the method in comparison to other recently proposed approaches for direct measurement of extreme laser intensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.