Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUE(max)) that is typical of arid ecosystems. RUE(max) was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.
Increases in the abundance or density of woody plants in historically semiarid and arid grassland ecosystems have important ecological, hydrological, and socioeconomic implications. Using a simplified water‐balance model, we propose a framework for conceptualizing how woody plant encroachment is likely to affect components of the water cycle within these ecosystems. We focus in particular on streamflow and the partitioning of evapotranspiration into evaporation and transpiration. On the basis of this framework, we suggest that streamflow and evaporation processes are affected by woody plant encroachment in different ways, depending on the degree and seasonality of aridity and the availability of subsurface water. Differences in landscape physiography, climate, and runoff mechanisms mediate the influence of woody plants on hydrological processes. Streamflow is expected to decline as a result of woody plant encroachment in landscapes dominated by subsurface flow regimes. Similarly, encroachment of woody plants can be expected to produce an increase in the fractional contribution of bare soil evaporation to evapotranspiration in semiarid ecosystems, whereas such shifts may be small or negligible in both subhumid and arid ecosystems. This framework for considering the effects of woody plant encroachment highlights important ecological and hydrological interactions that serve as a basis for predicting other ecological aspects of vegetation change—such as potential changes in carbon cycling within an ecosystem. In locations where woody plant encroachment results in increased plant transpiration and concurrently the availability of soil water is reduced, increased accumulation of carbon in soils emerges as one prediction. Thus, explicitly considering the ecohydrological linkages associated with vegetation change provides needed information on the consequences of woody plant encroachment on water yield, carbon cycling, and other processes.
Abstract.A new large-scale cloud and precipitation scheme, which accounts for the subgrid-scale variability of clouds, is coupled to NCAR's Regional Climate Model (RegCM). This scheme partitions each grid cell into a cloudy and noncloudy fraction related to the average grid cell relative humidity. Precipitation occurs, according to a specified autoconversion rate, when a cloud water threshold is exceeded. The specification of this threshold is based on empirical in-cloud observations of cloud liquid water amounts. Included in the scheme are simple formulations for raindrop accretion and evaporation. The results from RegCM using the new scheme, tested over North America, show significant improvements when compared to the old version. The outgoing longwave radiation, albedo, cloud water path, incident surface shortwave radiation, net surface radiation, and surface temperature fields display reasonable agreement with the observations from satellite and surface station data. Furthermore, the new model is able to better represent extreme precipitation events such as the Midwest flooding observed in the summer of 1993. Overall, RegCM with the new scheme provides for a more accurate representation of atmospheric and surface energy and water balances, including both the mean conditions and the variability at daily to interannual scales. The latter suggests that the new scheme improves the model's sensitivity, which is critical for both climate change and process studies. IntroductionIn many applications of the National Center for Atmospheric Research (NCAR) Regional Climate Model (RegCM), an accurate simulation of the energy and water cycles is crucial [Giorgi and Mearns, 1999]. The presence of clouds and resulting precipitation is the primary control on these cycles. It is therefore important to accurately represent cloud processes in many modeling applications. Clouds, however, are often poorly represented in both regional and global climate models (RCMs and GCMs, respectively) partly because some of the key cloud processes occur at spatial and temporal scales not resolved by current models. This study presents a simple, yet physical, resolvable-scale (nonconvective) moist physics and cloud scheme for the NCAR RegCM that accounts for the subgrid variability of clouds, the accretion of cloud water, and the evaporation of raindrops.The response of the climate system to changes in greenhouse gases, sulfate aerosols, soil moisture, and vegetation is strongly influenced by cloud processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.