Harmonic generation in the limit of ultra-steep density gradients is studied experimentally. Observations demonstrate that while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale-lengths (Lp/λ < 1) the absolute efficiency of the harmonics declines for the steepest plasma density scale-length Lp → 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the Relativistic Oscillating Mirror (ROM) was estimated to be in the range of 10 −4 − 10 −6 of the laser pulse energy for photon energies ranging from 20 − 40 eV, with the best results being obtained for an intermediate density scale-length.PACS numbers: 52.59.Ye, 52.38.-r Keywords: surface high-harmonic generation, relativistic laser plasma interaction, attosecond pulse generation Ultrashort XUV pulses are a promising tool for a wide range of applications including attosecond laser physics and seeding of free-electron X-ray lasers. Typically, they are created by the nonlinear frequency up-conversion of an intense femtosecond driving laser field in a gaseous medium. Remarkable progress has been made to the present date with efficiencies reaching the level of 10 −4 at 20 nm wavelengths [1,2]. Such efficiencies are not yet available at shorter wavelengths or for attosecond pulse generation and the low intensities at which harmonic conversion takes place in gaseous media, makes harnessing the high peak power in the 0.1−1PW regime challenging. High-harmonic generation at a sharp plasma-vacuum interface via the Relativistically Oscillating Mirror (ROM) mechanism [3] is predicted to overcome these limitations and result in attosecond pulses of extreme peak power [4,5].While other mechanisms such as Coherent Wake Emission (CWE) can also emit XUV harmonics [6], the ROM mechanism is generally reported to dominate in the limit of highly relativistic intensities, where the normalized vector potential a 2 0 = Iλ 2 /(1.37 · 10 18 µm 2 W/cm 2 ) 1. The efficiency of ROM harmonics is predicted to converge to a power law for ultra-relativistic intensities [7], such that the conversion efficiency is given by η ≈ (ω/ω 0 ) −8/3 up to a threshold frequency ω t ∼ γ 3 , beyond which the spectrum decays exponentially. Here, γ is the maximum value of the Lorentz-factor associated with the reflection point of the ROM process. While these predictions correspond well with the observations made in experiments using pulse durations of the order of picoseconds in terms of highest photon energy up to keV [8,9] and the slope of the harmonic efficiency [10], no absolute efficiency measurements have been reported to date.The plasma density scale-length plays a critical role in determining the response of the plasma to the incident laser radiation. In the picosecond regime, the balance between the laser pre...
High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.
Energy coupling during relativistically intense laser-matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma-vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light-matter interaction physics and applications. These include research areas right at the forefront of extreme laser-plasma science such as laser-driven ion acceleration 1 , bright attosecond pulse generation 2,3 and efficient energy coupling for the generation and study of warm dense matter 4 . Here we demonstrate attosecond control over the trajectories of relativistic electron bunches formed during such interactions by studying the emission of extreme ultraviolet (XUV) harmonic radiation. We describe how the precise addition of a second laser beam operating at the second harmonic of the driving laser pulse can significantly transform the interaction by modifying the accelerating potential provided by the fundamental frequency to drive strong coherent emission. Numerical particle-in-cell code simulations and experimental observations demonstrate that this modification is extremely sensitive to the relative phase of the two beams and can lead to significant enhancements in the resulting harmonic yield. This work also reveals that the ability to control these extreme interactions
The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.