Development of high energy density hybrid electrode based on rGO–PMo12 for all-solid state supercapacitors along with actual demonstration of lighting of thirty one LEDs (NEO).
Tunneling nanotubes (TnTs) are thin channels that temporally connect nearby cells allowing the cell-to-cell trafficking of biomolecules and organelles. The presence or absence of TnTs in human neoplasms and the mechanisms of TnT assembly remains largely unexplored. In this study, we have identified TnTs in tumor cells derived from squamous cell carcinomas (SCC) cultured under bi-dimensional and tri-dimensional conditions and also in human SCC tissues. Our study demonstrates that TnTs are not specific of epithelial or mesenchymal phenotypes and allow the trafficking of endosomal/lysosomal vesicles, mitochondria, and autophagosomes between both types of cells. We have identified focal adhesion kinase (FAK) as a key molecule required for TnT assembly via a mechanism involving the MMP-2 metalloprotease. We have also found that the FAK inhibitor PF-562271, which is currently in clinical development for cancer treatment, impairs TnT formation. Finally, FAK-deficient cells transfer lysosomes/autophagosomes to FAK-proficient cells via TnTs which may represent a novel mechanism to adapt to the stress elicited by impaired FAK signaling. Collectively, our results strongly suggest a link between FAK, MMP-2, and TnT, and unveil new vulnerabilities that can be exploited to efficiently eradicate cancer cells.
Three-dimensionally ordered macroporous (3DOM) LiMn 2 O 4 spinel was prepared by a colloidal templating process. An opal structure consisting of monodispersed poly[styrene-co-methacrilic acid] beads (380 nm in diameter) was used as a template. After infiltration of Li and Mn nitrates, the assembly was calcined in air at temperatures between 500 and 700 °C. Chemical processes were studied by means of thermal analysis, X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (NMR). Morphological and microstructural characterizations were carried out by scanning and transmission electron microscopy (SEM, TEM) and by gas adsorption volumetry. Despite the simple preparation procedure, several steps are detected, which prove to be critical for the successful formation of high-quality 3DOM materials. Optimization of the preparation conditions gave extended macroporous networks with relatively smooth nanocrystalline spinel walls and a surface area of 24 m 2 /g. Porosity results from three ranges of pores: (1) the macroporous sublattice (replica of the opal lattice), (2) the pores formed after mineralization of the tetrahedral and octahedral holes of the template, and (3) the porosity from the nanocrystallites forming roughened macroporous walls. Films of 3DOM LiMn 2 O 4 were prepared on conductive substrates and used as electrodes, showing fast and reversible lithium deinsertion over a large number of cycles without suffering significant morphological or electrochemical degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.