We construct a simple mathematical model that describes the dynamics of the transmission of COVID-19 disease in a human population. It accounts for the various phases of the disease and its mode of contact through infectious humans and surfaces. The contribution of asymptomatic humans in the dynamics of the disease is well represented. The model is a system of ordinary dierential equations that describes the evolution of humans in a range of COVID-19 states due to emergence of an index case. The analysis includes establishment of the basic reproduction number, R0, where, R0 < 1 signifies a disease free state that is locally asymptotically stable. A key result in this study shows some long term damped oscillatory behaviour that do not seem to end soon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.