Climate change is projected to increase the incidence of severe drought in many regions, potentially requiring selection for different traits in crop species to maintain productivity under water stress. In this study, we identified a suite of hydraulic traits associated with high productivity under water stress in four genotypes of S. melongena L. We also assessed the potential for recovery of this suite of traits from drought stress after re-watering. We observed that two genotypes, PHL 4841 and PHL 2778, quickly grew into large plants with smaller, thicker leaves and increasingly poor hydraulic status (a water-spender strategy), whereas PHL 2789 and Mara maintained safer water status and larger leaves but sacrificed large gains in biomass (a water-saver strategy). The best performing genotype under water stress, PHL 2778, additionally showed a significant increase in root biomass allocation relative to other genotypes. Biomass traits of all genotypes were negatively impacted by water deficit and remained impaired after a week of recovery; however, physiological traits such as electron transport capacity of photosystem II, and proportional allocation to root biomass and fine root length, and leaf area recovered after one week, indicating a strong capacity for eggplant to rebound from short-term deficits via recovery of physiological activity and allocation to resource acquiring tissues. These traits should be considered in selection and breeding of eggplant hybrids for future agricultural outlooks.
Drought during the formative stages of a plant’s growth triggers a sequence of responses to maintain optimal growing conditions, but often at the expense of crop productivity. Two field experiments were conducted to determine the effect of drought on 10 high-yielding sugarcane genotypes at two formative stages (the tillering stage (TS) and stalk elongation (SS)), within 30 days after treatment imposition. The experiments followed a split-plot in a randomized complete block design with three replicates per genotype. Agro-physiological responses to drought were observed to compare the differences in the response of sugarcane during the two formative stages. Drought significantly reduced total chlorophyll content (Chl) and stomatal conductance (Gs) for both formative stages, while significantly increasing total scavenging activity (AOA) and electrolyte leakage (EC). A higher level of Chl was observed in the stalk elongation stage compared to the tillering stage; however, lower AOA coupled with higher EC in the stalk elongation stage suggests higher drought susceptibility. Pearson's correlation analysis revealed a stronger correlation between plant height, internode length, Chl, AOA, EC, and Gs at the tillering stage relative to the stalk elongation stage. Moreover, results from the multivariate analysis indicate the different contribution values of each parameter, supplementing the hypothesized difference in response between the two formative stages. Multivariate analysis clustered the 10 genotypes into groups based on the traits evaluated, suggesting the ability of these traits to detect differences in a sample population. The observed relationship among traits during the two formative stages of sugarcane will be significant in screening and identifying drought-susceptible and drought-tolerant genotypes for variety development studies.
This research focused on the screening of indigenous microorganisms isolated from banana soils for their capability to synthesize silver nanoparticles (AgNPs) extracellularly. Ninety-five isolates were screened for AgNP production. The cell-free extracts of these isolates were added to silver nitrate (AgNO3) aqueous solution and were observed for color changes from original pale yellow to dark brown. Ten isolates (3 bacteria and 7 fungi) were found capable of producing AgNPs. Bacterial isolates B2, B3, and B5 were molecularly identified as Bacillus aryabhattai, Priestia megaterium, and B. megaterium, respectively. The AgNPs produced by these bacterial isolates were circular and showed an absorbance peak at approximately 420 nm. On the other hand, the fungal isolates F2, F3, and F43 were molecularly identified as Penicilliumcitrinum, P. glaucoroseum, and P. oxalicum. The AgNPs produced by the Penicillium spp were aggregated, circular and showed absorbance peaks at 420 nm. The other four fungal isolates, F7, F24, F29, and F40, were identified as Aspergillus flavus, A. terreus, and A. japonicum (F29 and F40), respectively. The AgNPs produced by the Aspergillus spp. were circular and showed absorbance peaks between 420 nm and 450 nm. The continuous search for novel isolates that can carry out the biogenic synthesis of AgNPs remains the focus of nanotechnological research. This study confirms microorganisms of Bacillus, Penicillium, and Aspergillus genera can effectively biosynthesize AgNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.