The characteristics of the head-on collision (HOC) between two positron acoustic solitary waves (PASWs) in a four component electron-positron-ion (EPI) space plasma have been investigated theoretically, using the extended Poincaré-Lighthill-Kuo (PLK) method. The analytical phase shifts after the collision of the two solitary
The ionization source model is considered, for the first time, to study the combined effects of trapped electrons, transverse perturbation, ion streaming velocity, and dust charge fluctuations on the propagation of dust-ion-acoustic solitons in dusty plasmas. The solitary waves are investigated through the derivation of the damped modified Kadomtsev–Petviashivili equation using the reductive perturbation method. Conditions for the formation of solitons as well as their properties are clearly explained. The relevance of our investigation to supernovae shells is also discussed.
The derivative expansion perturbation method is applied to a strongly coupled dusty plasma system consisting of negatively charged dust grains, electrons, and ions. The basic equations are reduced to a nonlinear Schrödinger type equation appropriate for describing the modulated dust acoustic (DA) waves. We have examined the modulation (in) stability and the dependence of the system physical parameters (angular frequency and group velocity) on the polarization force variation. Finally, the extended Poincaré-Lighthill-Kuo technique is employed to investigate the head-on collision (HoC) between two DA dark solitons. The analytical phase shifts and the trajectories of these dark solitons after the collision are derived. The numerical illustrations show that the polarization effect has strong influence on the nature of the phase shifts and the trajectories of the two DA dark solitons after collision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.