Using the parameters of Voronoi-Dirichlet (VD) polyhedra the authors have verified the maximum space-filling principle in substructures constructed of actinide atoms (from thorium to einsteinium) in all crystal structures from the Inorganic Crystal Structure Database (ICSD) and Cambridge Structural Database (CSD). It is shown that most of the actinide atoms in such substructures are surrounded by 14 or 12 neighboring atoms. It was discovered that U substructures with greater than or equal to 20 crystallographically independent U atoms in the unit cell feature 15-faceted VD polyhedra as the most common type. Analogous unimodal distributions of VD polyhedra with maxima at 15 faces are observed for F and H substructures and the model system 'ideal gas', which has no order in the arrangement of atoms. This similarity allows one to assume that substructures of crystal structures with greater than or equal to 20 crystallographically independent atoms in the unit cell do not possess short-range (local) order in the mutual arrangement of atoms, but feature longrange order (translational symmetry). Thus, crystalline compounds with such substructures can formally be regarded as 'antiliquid', that is the antipode of a liquid, whose structure possesses short-range order but lacks translational symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.