Abstract. High-quality, long-term measurements of terrestrial trace gas emissions are important for investigations of atmospheric, geophysical and biological processes to help mitigate climate change and protect the environment and the health of citizens. High-frequency terrestrial fluxes of the radioactive noble gas 222Rn, in particular, are useful for validating radon flux maps and used to evaluate the performance of regional atmospheric models, to improve greenhouse gas emission inventories (by the radon tracer method) and to determine radon priority areas for radiation protection goals. A new automatic radon flux system (Autoflux) was developed as a transfer standard (TS) to assist with establishing a traceability chain for field-based radon flux measurements. The operational characteristics and features of the system were optimized based on a literature review of existing flux measurement systems. To characterize and calibrate Autoflux, a bespoke radon exhalation bed (EB) facility was also constructed with the intended purpose of providing a constant radon exhalation under a specific set of controlled laboratory conditions. The calibrated Autoflux was then used to transfer the derived calibration to a second continuous radon flux system under laboratory conditions; both instruments were then tested in the field and compared with modeled fluxes. This paper presents (i) a literature review of state-of-the-art radon flux systems and EB facilities; (ii) the design, characterization and calibration of a reference radon EB facility; (iii) the design, characterization and calibration of the Autoflux system; (iv) the calibration of a second radon flux system (INTE_Flux) using the EB and Autoflux, with a total uncertainty of 9 % (k = 1) for an average radon flux of ∼ 1800 mBq m−2 s−1 under controlled laboratory conditions; and (v) an example application of the calibrated TS and INTE_Flux systems for in situ radon flux measurements, which are then compared with simulated radon fluxes. Calibration of the TS under different environmental conditions and at lower reference fluxes will be the subject of a separate future investigation.
Gestational diabetes mellitus (GDM) represents additional risks to both mother and infant. Moreover it increases a woman's risk of cardiovascular disease in the postpartum. The aim of our study was therefore to detect changes of both the QT dispersion and the electrical heart field that could be typical for GDM. Body surface potential maps were obtained using the Cardiac 112.2 device from 26 young women with GDM and 54 young healthy pregnant women in the 36th week of pregnancy. The same recordings were obtained from 18 healthy women in the same age (19-36 years). The average QT dispersion (±SD) in women suffering from GDM was significantly higher (107±25 ms) both than in those with physiological pregnancy (73±18 ms) and than in the normal subjects (34±12 ms) (P<0.001). Moreover we have found in GDM patients shorter QRS complex 82.0±6.8 ms vs. 89.5±8.2 ms in healthy pregnant women and 90.8±7.9 ms in the control group (p=0.011), more horizontal electrical heart axis [16.4±20.1° vs. 42.4±28.7° and 74.6±39.2° respectively (P<0.05)] and lower some depolarization and repolarization amplitudes on isopotential and isointegral maps. According to these results we suppose that described electrocardiographic changes reflect a deterioration of the complete process of ventricular depolarization and repolarization in GDM.
Abstract. High-quality, long-term measurements of terrestrial trace gas emissions are important for investigations of atmospheric, geophysical and biological processes to help mitigate climate change, protect the environment, and the health of citizens. High-frequency terrestrial fluxes of the radioactive noble gas 222Rn, in particular, are useful for validating radon flux maps, used to evaluate the performance of regional atmospheric models, to improve greenhouse gas emission inventories (by the Radon Tracer Method) and to determine Radon Priority Areas for radiation protection goals. A new automatic radon flux system (the Autoflux) was developed as a Transfer Standard (TS) to assist with establishing a traceability chain for field-based radon flux measurements. The operational characteristics and features of the system were optimized based on a literature review of existing flux measurement systems. To characterize and calibrate the Autoflux a bespoke radon Exhalation Bed (EB) facility was also constructed with the intended purpose of providing a constant radon emanation under a specific set of controlled laboratory conditions. The calibrated Autoflux was then used to transfer the derived calibration to a second continuous radon flux system under laboratory conditions, both instruments were then tested in the field and compared with modeled fluxes. This paper presents: i) a literature review of state-of-the-art radon flux systems and EB facilities; ii) the design, characterization and calibration of a reference radon EB facility; iii) the design, characterization and calibration of the Autoflux system; iv) the calibration of a second radon flux system (INTE_Flux) using the EB and Autoflux, with a total uncertainty of 9 % (k=1) for an average radon flux of ~1800 mBq m−2 s−1 under controlled laboratory conditions; and iv) an example application of the calibrated TS and INTE_Flux systems for in situ radon flux measurements which are then compared with simulated radon fluxes. Calibration of the TS under different environmental conditions and at lower reference fluxes will be the subject of a separate future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.