A new series of pyridinium cationic gemini surfactants was prepared by quaternization of the 2,2'-(alpha,omega-alkanediyl)bispyridines with N-alkylating agents, whose reactivity is briefly discussed. Particularly useful was the use of long-chain alkyl triflates (trifluoromethanesulfonates) for both overcoming the sterical hindrance in the pyridines and obtaining higher synthetic yields. Well-known 4,4'-(alpha,omega-alkanediyl)bis(1-alkylpyridinium) structures showed narrow temperature ranges for practical applications, due to their high Krafft points, while the new 2,2'-(alpha,omega-alkanediyl)bis(1-alkylpyridinium) series, accounted for good surface active properties. Due to the Krafft points below 0 degrees C, they could be exploited as solutions in water at any temperature. The characterization of the behavior of the series was performed by conductivity measurements. Some of the proposed structures exhibited unusual surface active behavior, which was interpreted in terms of particular conformational arrangements.
beta-Diketo acid-containing compounds are a promising class of human immunodeficiency virus type 1 (HIV-1) integrase (IN) inhibitors. Starting from the hypothesis that these inhibitors are able to coordinate ions in solution before interacting on the active site, a series of potentiometric measurements have been performed to understand the coordination ability of the diketo acid pharmacophore toward the biologically relevant Mg(2+). Moreover, by using beta-diketo acid/ester as model ligands with a set of divalent metal ions (Mg, Mn, Ni, Co, Cu, and Zn), we obtained a series of complexes and tested them for anti-HIV-1 IN activity. Results demonstrate that the diketo acid functionality chelates divalent metal ions in solution, and complexes with metals in different stoichiometric ratios are isolated. We postulate that the diketo acids act as complexes in their active form. In particular, they predominantly form species such as Mg(2)L(2+) and Mg(2)L(2) (derived from diketo acids, H(2)L), and MgL(+) and MgL(2) (derived from diketo esters, HL) at physiological pH. Furthermore, the synthesized mono- and dimetallic complexes inhibited IN at a high nanomolar to low micromolar range, with metal dependency in the phenyl diketo acid series. Retrospective analysis suggests that the electronic properties of the aromatic framework influence the metal-chelating ability of the diketo acid system. Therefore, the difference in activities is related to the complexes they preferentially form in solution, and these findings are important for the design of a new generation of IN inhibitors.
Two novel classes of cavitand-based coordination cages 7a--j and 8a--d have been synthesized via self-assembly procedures. The main factors controlling cage self-assembly (CSA) have been identified in (i) a P--M--P angle close to 90 degrees between the chelating ligand and the metal precursor, (ii) Pd and Pt as metal centers, (iii) a weakly coordinated counterion, and (iv) preorganization of the tetradentate cavitand ligand. Calorimetric measurements and dynamic (1)H and (19)F NMR experiments indicated that CSA is entropy driven. The temperature range of the equilibrium cage-oligomers is determined by the level of preorganization of the cavitand component. The crystal structure of cage 7d revealed the presence of a single triflate anion encapsulated. Guest competition experiments revealed that the encapsulation preference of cages 7b,d follows the order BF(4)(-) > CF(3)SO(3)(-) >> PF(6)(-) at 300 K. ES-MS experiments coupled to molecular modeling provided a rationale for the observed encapsulation selectivities. The basic selectivity pattern, which follows the solvation enthalpy of the guests, is altered by size and shape of the cavity, allowing the entrance of an ancillary solvent molecule only in the case of BF(4)(-).
A series of surfactants with tuned polarity were prepared, including a new class of compounds: gluco-pyridinium surfactants. Pure anomers were obtained by chromatographic separation. The conductivity and surface tension of surfactant solutions in water were measured, and provided interesting information regarding their aggregation behavior. Peculiarities were observed in the premicellar range. Tensidic parameters correlated with antimicrobial activity. A few parameters, mainly the hydrophobicity of the headgroup, may play a role in finding more efficient antimicrobial structures.
Apparent and partial molar enthalpies at 298 K of the aqueous solutions of cationic gemini surfactants 1,1'-didodecyl-2,2'-dimethylenebispyridinium dimethanesulfonate (12-Py(2)-2-(2)Py-12 MS); 1,1'-didodecyl-2,2'-trimethylenebispyridinium dimethanesulfonate (12-Py(2)-3-(2)Py-12 MS); 1,1'-didodecyl-2,2'-tetramethylenebispyridinium dimethanesulfonate (12-Py(2)-4-(2)Py-12 MS); 1,1'-didodecyl-2,2'-octamethylenebispyridinium dimethanesulfonate (12-Py(2)-8-(2)Py-12 MS); 1,1'-didodecyl-2,2'-dodecamethylenebispyridinium dimethanesulfonate (12-Py(2)-12-(2)Py-12 MS) were measured as a function of concentration and are here reported for the first time. They show a very peculiar behavior as a function of the spacer length, not allowing for the determination of a -CH 2- group contribution when this group is added to the spacer. The curve of the compound with a four-carbon-atom-long spacer lies between those of the compound with a spacer of 2 and 3 carbon atoms, instead of that below the latter, as expected. This surprising behavior, never found before in the literature and different from that found for the more popular m- s- m-type bisquaternary ammonium gemini surfactants, could be explained by a conformation change of the molecule, caused by stacking interactions between the two pyridinium rings, mediated by the counterion and appearing at an optimum length of the spacer. The hypothesis is also supported by the data obtained from the surface tension vs log c curves, showing that A min, the minimum area taken at the air-water interface by the molecule, is significantly lower for 12-Py(2)-4-(2)Py-12 MS than that of the other compounds of the same homologous series, and that the same compound has a greater tendency to form micelles instead of adsorbing at the air/water interface. The evaluation of the micellization enthalpies, by means of a pseudophase transition model, agrees with the exposed trends. These results confirm the great crop of information that can be derived from the study of the solution thermodynamics of aggregate systems and in particular from the curves of apparent and molar enthalpies vs concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.