In August 2004, a case of rabies was diagnosed in a puppy that had been illegally imported from Morocco to Bordeaux (France). Because a great number of people and animals were thought to have come into contact with the puppy, extensive tracing measures were implemented, and an international alert was launched to trace and treat the contacts at risk. One hundred and eighty seven people received post-exposure treatment, eight of whom also received serovaccination, and 57 animals known to have been exposed to the puppy were tested. Six months after the death of the rabid animal, none of the people treated showed any signs of rabies, nor was any secondary animal case reported. The management of this crisis highlights the importance of the role of a rapid alert system at European level. Strict application of sanitary control regulations is essential for animals introduced into EU countries, and all necessary information must be made available to EU residents travelling to rabies enzootic areas.
The disposition of a single 80 mg/kg injection of quinine base was compared in control and Plasmodium berghei-infected mice. Pharmacokinetic parameters were determined on repeated whole blood samples from caudal vein (experiment 1) and quinine distribution was evaluated in tissues and blood fractions from mice sacrificed two hours post dosing (experiment 2). Quinine concentrations were assessed by high performance liquid chromatography with fluorometric detection. Whole blood concentrations and AUC(0 - infinity) of quinine increased in a parasitaemia-dependent manner. Quinine blood clearance and peak blood concentrations of metabolites negatively correlated with the parasitaemia. The apparent distribution volume of quinine only decreased in severely ill mice. Quinine concentrations rise in a parasitaemia-dependent manner in homogenates of spleen, lungs and kidney and in erythrocyte pellets. The negative relationship, observed between the parasitaemia and the tissue-to-whole blood ratio for muscle, heart, liver and brain, contributes to the reduction of the blood distribution volume. Quinine uptake by muscle and heart was dependent on the free fraction of plasma quinine. The liver and brain concentrations of quinine were similar in control and infected mice. The tissue-to-plasma free fraction ratios decrease when the parasitaemia rises suggesting a restrictive uptake of quinine by these tissues. In conclusion. P. berghei malaria decreases both total clearance and apparent volume of distribution with a heterogeneous redistribution of quinine between the tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.