We show here that the product of two Laguerre-Gaussian (LG) beams, i.e. double LG beams (dLG), can be represented as finite superposition of conventional LG beams with certain coeffi-cients that are expressed via zero-argument Jacobi polynomials. This allows obtaining an explicit expression for the complex amplitude of the dLG beams in the Fresnel diffraction zone. Generally, such beams do not retain their structure, changing shape upon free-space propagation. However, if both LG beams are of the same order, we obtain a special case of a "squared" LG beam, which is Fourier-invariant. Another special case of the dLG beams is obtained when the azimuthal indices of the Laguerre polynomials are equal to n – m and n + m. For such a beam, an explicit expression is obtained for the complex amplitude in the Fourier plane. We show that if the lower indices of the constituent LG beams are the same, such a double LG beam is also Fourier-invariant. Similar to conventional LG beams, the product of LG beams can be used for optical data transmission, since they are characterized by azimuthal orthogonality and carry an orbital angular momentum equal to the topological charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.