In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (10 6 CFU mL À1 ) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75-95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co-inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, coinoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (10 3 -10 6 CFU mL À1 ). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum-infiltrated seed tubers.
It is well established that the pectinolytic bacteria Pectobacterium atrosepticum (Pca) and Dickeya spp. are causal organisms of blackleg in potato. In temperate climates, the role of Pectobacterium carotovorum subsp. carotovorum (Pcc) in potato blackleg, however, is unclear. In different western and central European countries plants are frequently found with blackleg from which only Pcc can be isolated, but not Pca or Dickeya spp. Nevertheless, tubers vacuum-infiltrated with Pcc strains have so far never yielded blackleg-diseased plants in field experiments in temperate climates. In this study, it is shown that potato tubers, vacuum-infiltrated with a subgroup of Pcc strains isolated in Europe, and planted in two different soil types, can result in up to 50% blackleg diseased plants. All three pathogens can cause tuber rot during storage, whereas infections of seed potatoes with Pca and Dickeya spp. can also result in the occurrence of various field symptoms, including reduced emergence, chlorosis, wilting, tuber and stem rot, blackleg, haulm desiccation and plant death (Pérombelon and Kelman 1980;Pérombelon 1992;Fraaije et al. 1996;Helias et al. 2000). These symptoms can be caused by Pca as well as by Dickeya spp., making identification of the causal organism by visual observation in the field unreliable. Regulatory field inspections in seed potatoes in many countries are therefore based on recognition of this 'blackleg complex' without discriminating between the various blackleg-causing organisms.
Studies were conducted to explain the relative success of 'Dickeya solani', a genetic clade of Dickeya biovar 3 and a blackleg-causing organism that, after recent introduction, has spread rapidly in seed potato production in Europe to the extent that it is now more frequently detected than D. dianthicola. In vitro experiments showed that both species were motile, had comparable siderophore production and pectinolytic activity, and that there was no antagonism between them when growing. Both 'D. solani' and biovar 1 and biovar 7 of D. dianthicola rotted tuber tissue when inoculated at a low density of 10 3 CFU mL. In an agar overlay assay, D. dianthicola was susceptible to 80% of saprophytic bacteria isolated from tuber extracts, whereas 'D. solani' was susceptible to only 31%, suggesting that 'D. solani' could be a stronger competitor in the potato ecosystem. In greenhouse experiments at high temperatures (28°C), roots were more rapidly colonized by 'D. solani' than by biovar 1 or 7 of D. dianthicola and at 30 days after inoculation higher densities of 'D. solani' were found in stolons and progeny tubers. In co-inoculated plants, fluorescent protein (GFP or DsRed)-tagged 'D. solani' outcompeted D. dianthicola in plants grown from vacuum-infiltrated tubers. In 3 years of field studies in the Netherlands with D. dianthicola and 'D. solani', disease incidence varied greatly annually and with strain. In summary, 'D. solani' possesses features which allow more efficient plant colonization than D. dianthicola at high temperatures. In temperate climates, however, tuber infections with 'D. solani' will not necessarily result in a higher disease incidence than infections with D. dianthicola, but latent seed infection could be more prevalent.
This paper describes a comparison study of test methods and supports the use of real-time polymerase chain reaction (PCR) for the detection of Clavibacter michiganensis subsp. sepedonicus and Ralstonia solanacearum in potato tubers in routine testing. These 2 bacteria are quarantine organisms under European Union (EU) regulatory control and testing for (latent) infections of these bacteria in seed potatoes is mandatory. Real-time PCR tests were performed on 276 routine potato tuber samples, including samples infected with either C. michiganensis subsp. sepedonicus or R. solanacearum, and the performance of these real-time PCR tests was compared with that of immunofluorescence (IF). Real-time PCR tests, using different primer sets and extraction and PCR protocols, proved to be sensitive and specific for the detection of C. michiganensis subsp. sepedonicus and R. solanacearum in potato tubers in routine testing, and performed at least as well as IF. Real-time PCR is a good addition to the detection protocols as laid down in EU regulations (EU Council Directives 2006/56/EC and 2006/63/EC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.