In the past years, the interest in the laser-driven acceleration of heavy ions in the mass range of $$\text {A}\approx 200$$ A ≈ 200 has been increasing due to promising application ideas like the fission-fusion nuclear reaction mechanism, aiming at the production of neutron-rich isotopes relevant for the astrophysical r-process nucleosynthesis. In this paper, we report on the laser acceleration of gold ions to beyond 7 MeV/u, exceeding for the first time an important prerequisite for this nuclear reaction scheme. Moreover, the gold ion charge states have been detected with an unprecedented resolution, which enables the separation of individual charge states up to 4 MeV/u. The recorded charge-state distributions show a remarkable dependency on the target foil thickness and differ from simulations, lacking a straight-forward explanation by the established ionization models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.