The development of food products implies ensuring the optimal composition and ratio of the basic components, as well as their technological compatibility. A priori, the quality of raw materials, the optimal formula of the product and the efficiency of the technological process determine the quality of products, including biological value. The use of whole-cell sensors such as infusoria Tetrahymena pyriformis is most productive for screening biological studies. At present, for a comprehensive assessment there are no data on the use of simplest technology of fermented dairy products and the design of their biological value. The purpose of this research is to develop a methodology for creating whole-milk products of optimal biological value using the express method of biotesting. The research object was yogurt with the ratio of the mass fraction of fat and protein in the range of 0.36 ÷ 1.5, sucrose in the range of 5 ÷ 10%. An express method for determining the relative biological value of fermented dairy products using test organisms and an original methodology for creating whole-milk products of optimal biological value have been developed. A software has been developed to calculate formula of the product optimized for the following indicators: the relative biological value of the product, the cost of raw material and basic materials. The methodology is a tool to assist industry organizations in improving production technologies and quality management systems.
Building a digital profile of food product with use of modern mathematical apparatus of basic matrices is a solution to the problem of designing innovative beverage recipes. In this regard, for the effective use of the food resource base, modeling and production of high-quality food products, there is an acute problem of developing a methodology for identifying food products using the full range of the currently available analytical base. The article discusses an algorithm for constructing a flexible experimental design for the new identification criteria development, taking into account the laboratory research peculiarities in the beverage industry. The application of software in experiment designing is considered and a practical example of integrated designing based on the construction of an identification criterion for wine materials is presented.
Identification of wine product authenticity is a topical question in theRussian Federation. A solution to this problem can be DNA authentication of wines, which is a technological process of product authenticity control using genetic identification of the main plant ingredient — wine grape varieties. This type of wine verification is carried out by analyzing residual amounts of Vitis vinifera L. nucleic acids extracted from cell debris of final products by molecular genetic methods. The aim of this work is the analysis of the existing methods for extraction of nucleic acids from grapes, wine raw materials and commercial wines, as well as description of the molecular genetic approaches to technical genetic identification of grape varieties and authentication of wines made from them. The obtained data suggest suitability of DNA authentication of wine products as a supplement to earlier approved analytical methods (documentary, visual, sensory, physico-chemical).
The key trends driving the global dairy market are shelf-life extension and generating consumer demand for new products. Healthy diets and special foods meet the criteria based on the protein digestibility-corrected amino acid score, while other factors affecting the digestibility and actual biological value of the protein are not considered. Express biological evaluation tests are very important for choosing the optimal formulation and efficient manufacturing process in order to maximize the biological value (BV). Such tests adequately represent the food properties: safety, nutrition value, digestibility, health benefits, etc. This study deals with the procedures for the quick biological evaluation of dairy products using indicator organisms. We adapted the relative biological value evaluation procedure, involving Tetrahymena pyriformis, for curd (cottage cheese) and curd products. The experiments showed that the most significant parameters are the milk pasteurization temperature and the curd heating temperature. The full factorial experiment identified the optimal curd production conditions to maximize the relative biological value (RBV): 81 °C milk pasteurization temperature and 54 °C curd heating temperature using the acid method of curd production. With these parameters, the RBV is at least 282%. Biotesting confirmed the optimal curd product component ratio of 60% curd to 40% fermented dairy beverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.