We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin−1/2 chain antiferromagnet, Sr2CuO3, with an extremely weak magnetic ordering. The ESR spectra at T > TN , in the disordered Luttinger-spin-liquid phase reveal nearly ideal Heisenberg-chain behavior with only very small, fieldindependent linewidth, ∼ 1/T . In the ordered state, below TN , we identify field-dependent antiferromagnetic resonance (AFMR) modes, which are well described by the pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. We propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude mode in the regime of a weak spontaneous symmetry breaking.
The magnetic phase diagram of a spin-1 2 chain antiferromagnet Sr 2 CuO 3 is studied by an ultrasound phasesensitive detection technique. The system is in the extreme proximity of the Luttinger-liquid quantum-critical point and we observe an unusually strong effect of magnetic field, which is very weak compared to the in-chain interaction, on the Néel ordering temperature. Inside the ordered phase, we detect an unexpected, field-induced continuous phase transition. The transition is accompanied by softening of magnetic excitation observed by electron-spin resonance, which in previous work [E. G. Sergeicheva et al., Phys. Rev. B 95, 020411(R) ( 2017)] was associated with a longitudinal (amplitude) mode of the order parameter. These results suggest a transition from a transverse collinear antiferromagnet to an amplitude-modulated spin-density-wave phase in a very weak magnetic field, which is unexpected for a system of weakly coupled Heisenberg spin-1 2 chains.
Low dimensional fermionic quantum systems are exceptionally interesting because they reveal distinctive physical phenomena, including among others, topologically protected excitations, edge states, frustration, and fractionalization. Our aim was to confine 3He on a suspended carbon nanotube to form 2-dimensional Fermi-system. Here we report our measurements of the mechanical resonance of the nanotube with adsorbed sub-monolayer down to 10 mK. At intermediate coverages we have observed the famous 1/3 commensurate solid. However, at larger monolayer densities we have observed a quantum phase transition from 1/3 solid to an unknown, soft, and mobile solid phase. We interpret this mobile solid phase as a bosonic commensurate crystal consisting of helium dimers with topologically-induced zero-point vacancies which are delocalized at low temperatures. We thus demonstrate that 3He on a nanotube merges both fermionic and bosonic phenomena, with a quantum phase transition between fermionic solid 1/3 phase and the observed bosonic dimer solid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.