In the quest for new energy sources, the research on controlled thermonuclear fusion 1 has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration 3, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch 4,5 (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.The main magnetic field configurations studied for the confinement of toroidal fusion-relevant plasmas are the tokamak 3 , the stellarator 6 and the reversed-field pinch 4,5 (RFP). In the tokamak, a strong magnetic field is produced in the toroidal direction by a set of coils approximating a toroidal solenoid, and the poloidal field generated by a toroidal current flowing into the plasma gives the field lines a weak helical twist. This is the configuration that has been most studied and has achieved the best levels of energy confinement time. Thus, it is the natural choice for the International Thermonuclear Experimental Reactor, which has the mission of demonstrating the scientific and technical feasibility of controlled fusion with magnetic confinement.The RFP, like the tokamak, is axisymmetric and exploits the pinch effect due to a current flowing in a plasma embedded in a toroidal magnetic field. The main difference is that, for a given plasma current, the toroidal magnetic field in a RFP is one order of magnitude smaller than in a tokamak, and is mainly generated by currents flowing in the plasma itself. This feature is underlying the main potential advantage of the RFP as a reactor concept, namely the capability of achieving fusion conditions with ohmic heating only in a much simpler and compact device. In the past, this positive feature was overcome by the poorer stability properties, which led to the growth and saturation of several magnetohydrodynamic (MHD) instabilities, eventually downgrading the confinement performance. These instabilities, represented by Fourier modes in the poloidal and toroidal angles θ and φ as exp [i(mθ − nφ) were considered as an unavoidable ingredient of the dynamo self-organization process 4,8,9 , necessary for the sustainment of the configuration in time. The occurrence of several MHD modes resonating on different plasma layers gives rise to overlapping magnetic islands, which result in a chaotic region, extending over most of the plasma volume 10 , where the magnetic surfaces are destroyed and the confinement level is modest. This conditi...
This paper describes the status of the pre-conceptual design activities in Europe to advance the technical basis of the design of a DEMOnstration Fusion Power Plant (DEMO) to come in operation around the middle of this century with the main aims of demonstrating the production of few hundred MWs of net electricity, the feasibility of operation with a closedtritium fuel cycle, and maintenance systems capable of achieving adequate plant availability. This is expected to benefit as much as possible from the ITER experience, in terms of design, licensing, and construction. Emphasis is on an integrated design approach, based on system engineering, which provides a clear path for urgent R&D and addresses the main design integration issues by taking account critical systems interdependencies and inherent uncertainties of important design assumptions (physics and technology). A design readiness evaluation, together with a technology maturation and down selection strategy are planned through structured and transparent Gate Reviews. By embedding industry experience in the design from the beginning it will ensure that early attention is given to technology readiness and industrial feasibility, costs, maintenance, power conversion, nuclear safety and licensing aspects.
A set of 24 in-vessel saddle coils is planned for MHD control experiments in ASDEX Upgrade. These coils can produce static and alternating error fields for suppression of Edge Localised Modes, locked mode rotation control and, together with additional conducting wall elements, resistive wall mode excitation and feedback stabilisation experiments. All of these applications address critical physics issues for the operation of ITER. This extension is implemented in several stages, starting with two poloidally separated rings of eight toroidally distributed saddle coils above and below the outer midplane. In stages 2 and 3, eight midplane coils around the large vessel access ports and 12 AC power converters are added, respectively. Finally (stage 4), the existing passive stabilising loop (PSL), a passive conductor for vertical growth rate reduction, will be complemented by wall elements that allow helical current patterns to reduce the RWM growth rate for active control within the accessible bandwidth. The system is capable of producing error fields with toroidal mode number n = 4 for plasma edge ergodisation with core island width well below the neoclassical tearing mode seed island width even without rotational shielding. Phase variation between the three toroidal coil rings allows to create or avoid resonances with the plasma safety factor profile, in order to test the importance of resonances for ELM suppression.
RFX-mod is a reversed field pinch (RFP) experiment equipped with a system that actively controls the magnetic boundary. In this paper we describe the results of a new control algorithm, the clean mode control (CMC), in which the aliasing of the sideband harmonics generated by the discrete saddle coils is corrected in real time. CMC operation leads to a smoother (i.e. more axisymmetric) boundary. Tearing modes rotate (up to 100 Hz) and partially unlock. Plasma-wall interaction diminishes due to a decrease of the nonaxisymmetric shift of the plasma column. With the ameliorated boundary control, plasma current has been successfully increased to 1.5 MA, the highest for an RFP. In such regimes, the magnetic dynamics is dominated by the innermost resonant mode, the internal magnetic field gets close to a pure helix and confinement improves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.