Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.
Due to the higher LET of kilovoltage (kV) radiation, there is potential for an increase in relative biological effectiveness (RBE) of absorbed doses of radiation from kV cone beam computed tomography (CBCT) sources in reference to megavoltage or Co-60 doses. This work develops a method for accurately coupling a Monte Carlo (MC) radiation transport code (PENELOPE) with the damage simulation (MCDS) to predict relative numbers of DNA double strand breaks (DSBs). The MCDS accounts for slowing down of electrons and delta ray production within the cell nucleus; however, determining the spectrum of electrons incident on the cell nucleus from photons interacting in a larger region of tissue is not trivial. PENELOPE simulations were conducted with a novel tally algorithm invoked where electrons incident on a detection material were tracked and both the incident energy and the final deposited dose were recorded. The DSB yield predicted by a set of MCDS runs of monoenergetic electrons was then looked up in a table and weighted by the specific energy of the incident electron. Our results indicate that the RBE for DSB induction is 1.1 for diagnostic x-rays with energies from 80 to 125 kVp. We found no significant change in RBE with depth or filtration. The predicted absolute DSB yields are about three times lower for cells irradiated under anoxic conditions than the yield in cells irradiated under normoxic (5%) or fully aerobic (100%) conditions. However, oxygen concentration has a negligible (± 0.02) effect on the RBE of kV CBCT x-rays.
Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.
The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology (the most updated version of this guideline can be found on the CPQR website). This particular TQC details recommended quality control testing for medical linear accelerators and multileaf collimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.