This study is aimed at the development of a method to fabricate porous spherical hydroxyapatite (HA)-fluorapatite (FA) granules. The method to produce porous granules is based on liquid immiscibility effect. A suspension of HA -FA powder mixtures in aqueous solution of gelatin and oil as a dispersion media were used. By stirring the mixtures of these immiscible liquids, granules of 50 -200 mm diameter can easily be produced. The granules were characterized with respect to their microstructure, phase composition and specific area. In vitro testing of human plasma protein adsorption onto the granules of HA and fluorhydroxyapatite were performed. No kind of difference in the dynamic protein adsorption between pure HA and the HA up to 10 wt% FA materials has been revealed. q
Direct Laser Sintering (DSL), a technology enabling the production of dense metal components directly from 3D CAD data, was used for the first time to produce a Metal Matrix Composite (MMCp) based on Al-Si-Cu alloy in view of its application in different fields, in particular for aeronautics. The porosity of the material obtained so was investigated by using optical and electron microscopy and, in particular, X-ray computed microtomography techniques. DSL is a unique technique to produce complex components in an economical way while computed microtomography is a unique technique to evaluate the porosity and pore and cracks distribution in a not destructive way. A near homogeneous distribution of the porosity and pore sizes was observed both comparing different regions of the same specimen and also by comparing different samples obtained by using the same DLS production method. A quantitative analysis of the damage in the composite is also reported
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.