Aim of study: Agricultural activities are the main source of volatilized ammonia (NH3). Maximum rates are reached within a few hours after slurry application. This study aimed to evaluate the influence of soil texture, tillage and slurry dry matter (DM) on NH3 volatilization.Area of study: Mediterranean semiarid environments (NE Spain).Material and methods: Ammonia volatilization from pig slurry directly applied on the soil surface was quantified in the laboratory, in soil samples from two experimental sites with different soil textures: silty loam and sandy loam. Field treatments consisted of two tillage management practices: till by disc-harrowing or no-till. At topdressing (cereal tillering), tillage treatments were combined with slurries of different DM contents applied onto the silty loam soil. Measurements were done for two cereal cropping seasons and during the period of maximum NH3 flux (12 h after slurry application). A photoacoustic analyzer was used.Main results: Slurry spreading at sowing resulted in low volatilization (0.7-9% of NH4+-N applied) as it also did at topdressing (0.3-1.4% of NH4+-N applied). At sowing, ammonia volatilization from high DM slurry (>7.5%) was significantly enhanced by no-till in both soils. At topdressing, this result was also found in records on silty loam soil. No differences were found between tillage systems when slurry of low DM content was applied, whatever the soil texture and application moment. Although NH3 volatilization was probably affected by the laboratory conditions, the comparisons between treatments were still valuable.Research highlights: Ammonia volatilization abatement can be improved (<1 kg NH3-N ha-1) if fertilization is done after crop establishment using low DM slurries (<3.5%).
Unsustainable soil management is one of the drivers of soil degradation, but impact assessment requires the development of indicators. Oribatids might be considered as early indicators of disturbances due to the stability of their community. The aim of this study was to investigate the feasibility of oribatids as bioindicators of sustainable agricultural practices. Under a dry Mediterranean climate, three fertilization experiments – two under a two-crop rotation system and one under maize monoculture and established 12 years earlier – were sampled 3× for oribatid identification during the last annual cropping cycle. The hypothesis was that different nutrient and crop managements affect the number of oribatid species and individuals present, and these parameters could be used as indicators of soil degradation. In total, 18 oribatid species were identified, and 1974 adult individuals were recovered. Maximum abundance was found prior to sowing. Pig slurry (PS) vs. control, and dairy cattle manure (CM) vs. mineral fertilization increased oribatid abundance. This increase was evident when the average applied rates with PS were ca. 2 Mg of organic matter (OM) ha− 1 yr− 1, or higher than ca. 4 Mg OM ha− 1 yr− 1 for CM. When the preceding crop was wheat and PS or CM were used, Oribatula (Zygoribatula) excavata (which reproduces sexually) predominated. In maize monoculture fertilized with CM, Tectocepheus sarekensis and Acrotritia ardua americana (which can reproduce through parthenogenesis) prevailed vs. Oribatula, which indicated a heavily disturbed soil. Under this specific Mediterranean environment, the predominance of certain parthenogenic oribatid species and the number of individuals provide advanced warning on soil degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.